Programming Guide

Agilent Technologies
ESG Vector Signal Generator

This guide applies to the following signal generator model:
E4438C ESG Vector Signal Generator

Due to our continuing efforts to improve our products through firmware and hardware revisions, signal
generator design and operation may vary from descriptions in this guide. We recommend that you use the
latest revision of this guide to ensure you have up-to-date product information. Compare the print date of this
guide (see bottom of page) with the latest revision, which can be downloaded from the following website:

www.agilent.com/find/esg

$°%-- Agilent Technologies

Manufacturing Part Number: E4400-90505
Printed in USA
May 2004

© Copyright 2001-2004 Agilent Technologies, Inc.

Notice

The material contained in thisdocument is provided “asis’, and is subject to being changed, without notice,
in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express
or implied with regard to this manual and to any of the Agilent products to which it pertains, including but
not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not
beliable for errors or for incidental or consegquential damages in connection with the furnishing, use, or
performance of this document or any of the Agilent products to which it pertains. Should Agilent have a
written contract with the User and should any of the contract terms conflict with these terms, the contract
terms shall control.

Questions or Comments about our Documentation?

We welcome any questions or comments you may have about our documentation. Please send us an E-mail
at sources_manuals@am.exch.agilent.com.

Contents

1 Getting Started o 1
Introduction to Remote Operationttt e e 2
L= o= 3
IO LibrariEs . . o 3
Programming Languageot it 4
USING GPIB .ottt 5
1. Installingthe GPIB Interface Cardt e 5
2. Selecting 1/O Librariesfor GPIB o 7
3. Setting Upthe GPIB INterface vv it e e et et et 7
4. Verifying GPIB Functionality oo e 8
GPIB [Nt ate TOIMS . o o ottt e e e e e 8
GPIB FUNCLON Statementsttt e e e e e 8
USING LAN L 14
1. Selecting I/O Librariesfor LAN o e e e e 14
2. SettingUpthe LAN Interface.o e 14
3. Verifying LAN Functionality 16
USING VXI-0d .o 18
USINg SOCKELS LAN . .ot e 19
UsSiNg TELNET LAN L. e e e e e e 20
USINg FT P o e e e e 23
USING RS 232 . ot e 25
1. Selecting I/O Librariesfor RS-232.o 25
2. Setting Upthe RS-232 Interface.o oot e e e e 26
3. Verifying RS-232 Functionality 27
Character Format Parameterst e e e e e 28

If YoOuHave Problems. 28
2. Programming EXamples 29
Using the Programming EXampleso e 30
Programming Examples Development Environment 30
Running C/C++ Programming EXamples i 31
GPIB Programming EXampleSot e e 3R2
Before Using the EXamples. oot e e 32
Interface Check using Agilent BASICttt 33
Interface Check Using NI-488.2and C++ oot et 34
Interface Check using VISA and C.o e 35
Local Lockout Using AgIlent BASIC. . ..ottt e 36
Local Lockout Using NI-488.2and CH++ottt e et e e 38

Contents

QueriesUsing AgIlent BASICot 39
QueriesUsing NI-488.2and CHt. . ..o e 41
QueriesUsINg VISA and C. .. oot e 44
GeneratingaCW Signal UsingVISA and Cot e e 46
Generating an Externally Applied AC-Coupled FM Signal UsingVISAandC.............. 48
Generating an Internal AC-Coupled FM Signal UsingVISAandC....................... 51
Generating a Step-Swept Signal UsingVISA andC ... 53
Saving and Recalling StatesUsing VISA and C 54
Reading the Data Questionable Status Register UsingVISAandC 57
Reading the Service Request Interrupt (SRQ) UsingVISAandC........... ...t 62
LAN Programming EXamplesot e 67
Before Using the EXamplesot 67
VXI-1LPrograming . .o .o oot e e e e e e e e e e e e e e 67
Sockets LAN Programming using C oottt e e e 72
Sockets LAN Programming USINGPERL it e e 101
Sockets LAN Programming UsSing Javaot e 102
RS-232 Programming EXamplest 105
Before Using the EXamplesot e e 105
Interface Check Using Agilent BASIC e 105
Interface Check UsSing VISA and Co i e 106
QueriesUsing AgIlent BASICt e 108
QueriesUsINg VISA and C.ot e e 109
3. Programming the Status Register System 113
OV IV BV . ettt e e e e e 114
Status Register Bit ValUESo 117
Accessing Status Register Information 118
Determining What to MONItOr e 118
Deciding HOW 10 MONIOr.ottt ettt e e e e e e 119
Status Register SCPI Commandsottt 121
SEAUS BYTE GIrOUP. . . . o . e et ittt et e e e e e e e e 123
SatUS Byt ROGI S O . . oottt e 124
Service Request Enable Registert 125
SEAEUS GIOUPS . .« . o o ettt e e e e e e e e e e e e e e 126
Standard EVeNnt SatUS GIOUD .« . v .o v e et ettt et ettt e et e e e 127
Standard Operation SEatUS GIOUP . - .« . o v o v vttt et e e e e e e e et 129
Baseband Operation StatUS GrOUD oottt et e et et e e 132
Data Questionable StatUS GrOUP. . . . v v v ettt e e e e e e e 135

Contents

Data Questionable Power StatuUS GroUPottt e e 139
Data Questionable Frequency StatuUS GroUp . . .« ..o v vt i et 142
Data Questionable Modulation StatUS GrOUD« o v v v v e e 145
Data Questionable Calibration StatuUSGroUD oot e e et 148
Data Questionable BERT StatUS GIOUD« v v ittt e e e e et e e 151

4. Downloading and Using Files 155
ARB Waveform DataDownloads.o 156
Bit-value and OULPUL POWEYot 157
Types of Arbitrary Waveform Generator Memory 157
Data REQUITEMENES . . . oottt e e e e e 158
File Structure and MEmMOTYot e e e e 159
Downloading Waveformso 159
Playing aDownloaded Waveform.ot e 173
Downloading E443xB Signal Generator Files 174
Understanding ARB Waveform File Composition and Encryption. 180
Downloading waveform data to the ESG for extraction as an encrypted waveformfile. 180
Extracting waveform files from the ESG for useinother ESGScoiiint. 181
Downloading encrypted waveform filestothe ESG. oo 182
User Bit/Binary File DataDownloadso ot et e 183
Framed and Unframed Data TYPeS o oo e ettt e e e e 183
Data ReqUITEMENES e e 184
Data LimitationSottt 185
DataVolatility 185
User Files as Data Source for Framed Transmissiono 185
Multiple User Files Selected as Data Sources for Different Timeslots. 188
Downloading User FileData.ot e 189
Selecting Downloaded User Filesasthe TransmittedDataoiin... 192
Modulating and Activatingthe Carrier. e 194
FIR Filter Coefficient DOwNIoads e 195
Data ReqUITEMENtS e 195
Data LimitationSottt 195
DataVolatility 195
Downloading FIR Filter CoefficientData.t i 196
Selecting a Downloaded User FIR Filter asthe ActiveFilter. 196
Downloads Directly into Pattern RAM (PRAM)o e 199
DataLimitationSo 199
DataVolatility . ..o 199

Contents

Downloading in List FOrmMat.ot e e e e 200
Downloading in Block FOrmat o 202
Modulating and Activatingthe Carrier. e 204
Viewing the PRAM WaVvefOrm.ot e e et 204
Data Transfer Troubleshooting.ottt e e 205
Direct PRAM Download Problemso 205
User File Download Problems 207
User FIR Filter Coefficient FileDownload Problems 209
ARB Waveform DataDownload Problems i 210

vi

1 Getting Started

This chapter provides the following major sections:

“Introduction to Remote Operation” on page 2
“Using GPIB” on page 5

“Using LAN” on page 14

“Using RS-232" on page 25

Getting Started
Introduction to Remote Operation

Introduction to Remote Operation

ESG signal generators support the following interfaces:

» General Purpose Interface Bus (GPIB)
» Local AreaNetwork (LAN)
* ANSI/EIA232 (RS-232) seria connection

Each of these interfaces, in combination with an /O library and programming language, can be used to
remotely control your signal generator. Figure 1-1 uses the GPIB as an example of the rel ationships between
the interface, 1/O libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView etc.

VISA
. National Instruments
Agdilent VISA VISA
. National Instruments
Agilent SICL NI-488.2 Library
Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

cedila

2 Chapter 1

Interfaces

GPIB

LAN

RS-232

I/0 Libraries

Getting Started
Introduction to Remote Operation

GPIB is used extensively when a dedicated computer is available for remote control of
each instrument or system. Data transfer is fast because the GPIB handles information
in 8-bit bytes. GPIB is physically restricted by the location and distance between the
instrument/system and the computer; cables are limited to an average length of two
meters per device with atotal length of 20 meters.

LAN based communication is supported by the signal generator. Datatransfer isfast as
the LAN handles packets of data. The distance between a computer and the signal
generator islimited to 100 meters (10BASE-T). The following protocols can be used to
communicate with the signal generator over the LAN:

e VMEDbus Extensions for Instrumentation (VXI) as defined in VXI-11
e SocketsLAN

¢ Telephone Network (TELNET)

* FileTransfer Protocol (FTP)

RS-232 is a common method used to communicate with asingle instrument; its primary
useisto control printers and external disk drives, and connect to a modem.
Communication over RS-232 is much slower than with GPIB or LAN because datais
sent and received one bit at atime. It also requires that certain parameters, such as baud
rate, be matched on both the computer and signal generator.

An /O library is acollection of functions used by a programming language to send instrument commands.
An1/O library must be installed on your computer before writing any programs to control the signal

generator.

NOTE

Agilent 1/O libraries support the V X1-11 standard.

Chapter 1

Getting Started
Introduction to Remote Operation

Programming Language

The programming language is used along with Standard Commands for Programming Instructions (SCPI)
and 1/0O library functions to remotely control the signal generator. Common programming languages
include:

CIC++

Agilent BASIC
LabView
Javall

Visual Basic®

Java is a U.S. trademark of Sun Microsystems, Inc.
Visual Basic is a registered trademark of Microsoft Corporation

Chapter 1

Getting Started
Using GPIB

Using GPIB

The GPIB allows instruments to be connected together and controlled by a computer. The GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the |IEEE website, www.ieee.org, for details on these standards.

1. Installing the GPIB Interface Card

A GPIB interface card must be installed in your computer. Two common GPIB interface cards are the
National Instruments (NI) PCI-GPIB and the Agilent GPIB interface cards. Follow the GPIB interface card
instructions for installing and configuring the card in your computer. The following tables provide
information on interface cards.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems
Interface Operating 170 Languages Backplane/B Max 1/0 Buffering
Card System Library us (kB/sec)
Agilent Windows VISA / CIC++, Visual ISA/EISA, 750 Built-in
82341C for 95/98/NT/ SICL Basic, Agilent 16 bit
ISA bus 2000° VEE, Agilent
computers Basic for
Windows
Agilent Windows VISA / C/C++, Visual ISA/EISA, 750 Built-in
82341D 95 SICL Basic, Agilent 16 hit
Plug& Play VEE, Agilent
for PC Basic for
Windows
Agilent Windows VISA / C/C++, Visual PCI 32 bit 750 Built-in
82350A for 95/98/NT/ SICL Basic, Agilent
PCI bus 2000 VEE, Agilent
computers Basic for
Windows

Windows 95, 98, NT and 2000 are registered trademarks of Microsoft Corporation

Chapter 1 5

Getting Started

Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems
Interface Operating I/0 Library Languages Backplane/B Max I/0
Card System us
National Windows VISA CIC++, PCI 32 bit 15
Instrument’s 95/98/2000/ NI1-488.200 Visual BASIC, Mbytes/s
PCI-GPIB ME/NT LabView
Nationa Windows VISA C/C++, PCI 32 bit 1.5
Instrument’s NT NI-488.2 Visual BASIC, Mbytes/s
PCI-GPIB+ LabView
NI-488.2 is a trademark of National Instruments Corporation
Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations
Interface Operating 170 Library Languages Backplane/B Max I/0 Buffering
Card System us (kB/sec)
Agilent HP-UX 9.x, VISA/SICL ANSI C, EISA 750 Built-in
E2071C HP-UX Agilent VEE,
10.01 Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL ANSI C, EISA 750 Built-in
E2071D 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL ANSI C, PCI 750 Built-in
E2078A 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
6 Chapter 1

Getting Started
Using GPIB

2. Selecting 1/0 Libraries for GPIB

The /O libraries are included with your GPIB interface card. These libraries can also be downloaded from
the National Instruments website or the Agilent website. The following is adiscussion on these libraries.

VISA

SICL

NI-488.2

VISA isan /O library used to develop 1/O applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISAD and Agilent VISA librariesare
similar implementations of VISA and have the same commands, syntax, and functions.
Thedifferencesareinthe lower level 1/0 libraries; NI-488.2 and SICL respectively. Itis
best to use the Agilent VISA library with the Agilent GPIB interface card or NI-VISA

with the NI PCI-GPIB interface card.

Agilent SICL can be used without the VISA overlay. The SICL functions can be called
from a program. However, if this method is used, executable programs will not be
portableto other hardware platforms. For example, aprogram using SICL functionswill
not run on a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 can be used without the VISA overlay. The NI1-488.2 functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using NI-488.2 functions
will not run on a computer with Agilent SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. PressUtility > GPIB/RS-232 LAN > GPIB Address.

2. Usethe numeric keypad, the arrow keys, or rotate the front panel knob to set the desired address.

The signal generator’s GPIB addressis set to 19 at the factory. The acceptable range of addressesis 0
through 30. Once initiaized, the state of the GPIB addressis not affected by asignal generator preset or
by a power cycle. Other instruments on the GPIB cannot use the same address as the signal generator.

3. PressEnter.
4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to Table 1-4 for
cable part numbers.)
Table 1-4 Agilent GPIB Cables
Modéd 10833A 10833B 10833C 10833D 10833F 10833G
Length 2 meters 4 meters .5 meter 6 meters 8 meters

NI-VISA is a registered trademark of National Instruments Corporation

Chapter 1

Getting Started
Using GPIB

4. Verifying GPIB Functionality

Use the VISA Assistant, available with the Agilent 10 Library or the Getting Started Wizard available with
the National Instrument 1/O Library, to verify GPIB functionality. These utility programs allow you to
communicate with the signal generator and verify its operation over the GPIB. Refer to the Help menu
available in each utility for information and instructions on running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example programsin
Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.
3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured for
your PC.

GPIB Interface Terms

Aninstrument that is part of a GPIB network is categorized as a listener, talker, or controller, depending on
its current function in the network.

listener A listener is adevice capable of receiving data or commands from other instruments.
Several instruments in the GPIB network can be listeners simultaneously.

talker A talker is adevice capable of transmitting data. To avoid confusion, a GPIB system
alows only one device at atime to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including itself)
for an information transfer. Only one device at atime can be an active controller.

GPIB Function Statements

Function statements are the basis for GPIB programming and instrument control. These function statements
combined with SCPI provide management and data communication for the GPIB interface and the signal
generator.

This section describes functions used by different 1/O libraries. Refer to the NI1-488.2 Function Reference
Manual for Windows, Agilent Standard Instrument Control Library reference manual, and Microsoft®
Visual C++ 6.0 documentation for more information.

Microsoft is a registered trademark of Microsoft Corporation.

8 Chapter 1

Getting Started
Using GPIB

Abort Function

The Agilent BASIC function ABCRT and the other listed I/O library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, thisisan initialization command used to place the GPIB in a known starting condition.

Table 1-5

Agilent BASIC VISA NI-488.2 Agilent SICL
10 ABORT 7 vi Ter m nat e (parameter i bstop(int ud) | iabort (id)
list)

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate normal
execution of an asynchronous operation. The parameter list describes the session and
jobid.

NI-488.2

Library The NI-488.2 library function aborts any asynchronous read, write, or command

operation that isin progress. The parameter ud is the interface or device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the session
i d. This function is supported with C/C++ on Windows 3.1 and Series 700 HP-UX.

Remote Function

The Agilent BASIC function REMOTE and the other listed 1/0O library functions cause the signal generator to
change from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key on the signal generator front panel
restores manual operation.

Table 1-6
Agilent BASIC VISA NI-488.2 Agilent SICL
10 REMOTE 719 N/A Enabl eRenot e (parameter i renot e (id)
list)

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with the
exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

Chapter 1 9

Getting Started
Using GPIB

NI-488.2
Library

SICL

This NI-488.2 library function asserts the Remote Enable (REN) GPIB line. All devices
listed in the parameter list are put into a listen-active state although no indication is
generated by the signal generator. The parameter list describes the interface or device
descriptor.

The Agilent SICL function puts an instrument, identified by thei d parameter, into
remote mode and disables the front panel keys. Pressing the Local key on the signal
generator front panel restores manual operation. The parameter id is the session
identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKQOUT and the other listed 1/0 library functions can be used to
disable the front panel keys including the Local key. With the Local key disabled, only the controller (or a
hard reset of the line power switch) can restore local control.

Table 1-7
Agilent BASIC VISA NI-488.2 Agilent SICL
10 LOCAL LOCKQUT 719 | N/A Set RWLS (parameter igpibllo (id)
list)

Agilent BASIC The LOCAL LOCKQUT function disables all front-panel signal generator keys. Return to
local control can occur only with a hard on/off, when the LOCAL command is sent or if
the Preset key is pressed.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2

Library The NI-488.2 library function places the instrument described in the parameter list in
remote mode by asserting the Remote Enable (REN) GPIB line. The lockout stateis
then set using the Local Lockout (LLO) GPIB message. Local control can be restored
only with the Enablelocal NI1-488.2 routine or hard reset. The parameter list describes
the interface or device descriptor.

SICL The Agilent SICL igpibllo function prevents user access to front panel keys operation.
The function puts an instrument, identified by thei d parameter, into remote mode with
local lockout. The parameter i d is the session identifier and instrument address list.

10 Chapter 1

Local Function

Getting Started
Using GPIB

The Agilent BASIC function LOCAL and the other listed functions cause the signal generator to return to
local control with afully enabled front panel.

Table 1-8
Agilent BASIC VISA NI-488.2 Agilent SICL
10 LOCAL 719 N/A ibloc (int ud) iloc(id)
Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation, allowing
access to the signal generator’s front panel keys.
VISA Library The VISA library, at this time, does not have a similar command.
NI-488.2
Library The NI-488.2 library function placesthe interfacein local mode and allows operation of
the signal generator’s front panel keys. The ud parameter in the parameter list isthe
interface or device descriptor.
SICL The Agilent SICL function putsthe signal generator into Local operation; enabling front

Clear Function

panel key operation. Thei d parameter identifies the session.

The Agilent BASIC function CLEAR and the other listed I/O library functions cause the signal generator to
assume a cleared condition.

Table 1-9
Agilent BASIC VISA NI-488.2 Agilent SICL
10 CLEAR 719 vi O ear (Vi Sessi on i bclr(int ud) iclear (id)
Vi)

Agilent BASIC The CLEAR 719 function causes al pending output-parameter operations to be halted,
the parser (interpreter of programming codes) to reset and prepare for a new
programming code, stops any sweep in progress, and continuous sweep to be turned off.

VISA Library The VISA library usesthe viClear function. Thisfunction performs an | EEE 488.1 clear
of the signal generator.

NI-488.2

Library The NI-488.2 library function sends the GPIB Selected Device Clear (SDC) message to

the device described by ud.

Chapter 1

11

Getting Started

Using GPIB

SICL The Agilent SICL function clears adevice or interface. The function also discards data
in both the read and write formatted 1/O buffers. Thei d parameter identifiesthe
session.

Output Function

The Agilent BASIC 1/0 function QUTPUT and the other listed 1/O library functions put the signal generator
into a listen mode and prepare it to receive ASCI| data, typically SCPlI commands.

Table 1-10

Agilent BASIC VISA NI-488.2 Agilent SICL

10 QUTPUT 719 | vi Printf(paraneter ibwt(paraneter |iprintf (paraneter
list) list) list)

Agilent BASIC The function QUTPUT 719 puts the signal generator into remote mode, makesit a
listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to output data.
This function formats according to the format string and sends data to the device. The
parameter list describes the session id and data to send.

NI-488.2

Library The NI-488.2 library function addresses the GPIB and writes data to the signal
generator. The parameter list includes the instrument address, session id, and the datato
send.

SICL The Agilent SICL function converts data using the format string. The format string

specifies how the argument is converted before it is output. The function sends the
charactersin the format string directly to the instrument. The parameter list includesthe
instrument address, data buffer to write, and so forth.

Enter Function

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other 1/O libraries use
similar functions to read data from the signal generator.

Table 1-11
Agilent BASIC VISA NI-488.2 Agilent SICL
10 ENTER 719; viScanf (parameter list) | ibrd (parameter list) iscanf (parameter list)

Agilent BASIC Thefunction ENTER 719 putsthe signal generator into remote mode, makes it atalker,
and assigns data or status information to a designated variable.

12 Chapter 1

VISA Library

NI-488.2
Library

SICL

Getting Started
Using GPIB

The VISA library uses the viScanf function and an associated parameter list to receive
data. Thisfunction receives data from the instrument, formats it using the format string,
and stores the data in the argument list. The parameter list includes the session id and
string argument.

The NI-488.2 library function addresses the GPIB, reads data bytes from the signal
generator, and stores the data into a specified buffer. The parameter list includes the
instrument address and session id.

The Agilent SICL function reads formatted data, convertsit, and stores the resultsinto
the argument list. The conversion is done using conversion rules for the format string.
The parameter list includes the instrument address, formatted data to read, and so forth.

Chapter 1

13

Getting Started
Using LAN

Using LAN

The signal generator can be remotely programmed viaa LAN interface and L AN-connected computer using
one of several LAN interface protocols. The LAN allows instruments to be connected together and
controlled by a LAN-based computer. LAN and its associated interface operations are defined in the IEEE
802.2 standard. See the | EEE website for more details.

The signal generator supports the following LAN interface protocols:

e VXI-11

* SocketsLAN

» Telephone Network (TELNET)

» File Transfer Protocol (FTP)

VXI-11 and sockets LAN are used for general programming using the LAN interface, TELNET is used for

interactive, one command at atime instrument control, and FTP is for file transfer.

1. Selecting 1/0 Libraries for LAN

The TELNET and FTP protocols do not require 1/O libraries to be installed on your computer. However, to
write programs to control your signal generator, an I/O library must be installed on your computer and the
computer configured for instrument control using the LAN interface.

The /O libraries can be downloaded from the Agilent website. The following is a discussion on these
libraries.

Agilent VISA VISA isan I/O library used to develop I/O applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

SICL Adgilent SICL isalower level library that isinstalled along with Agilent VISA.
2. Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an I P address must be assigned
to the signal generator either manually or by using DHCP client service. Your system administrator can tell
you which method to use.

Manual Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

2. PressHostname.

14 Chapter 1

Getting Started
Using LAN

3. Usethelabeled text softkeys and/or numeric keypad to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.

4. PressEnter.

5. Set LAN Config Manual DHCP to Manual.

6. Press|P Address and enter a desired address.

Use the left and right arrow keysto move the cursor. Use the up and down arrow keys, front panel knob,
or numeric keypad to enter an |P address. To erase the current |P address, press the Clear Text softkey.

NOTE To remotely access the signal generator from a different LAN subnet, you must also enter
the subnet mask and default gateway. See your system administrator to obtain the
appropriate values.

7. Pressthe Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action assigns ahostname and | P address (as well as a gateway and subnet mask, if these have been
configured) to the signal generator. The hostname, |P address, gateway and subnet mask are not affected
by an instrument preset or by a power cycle.

8. Connect the signal generator to the LAN using a 10BASE-T LAN cable.
DHCP Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

2. PressHostname.

NOTE If the DHCP server uses dynamic DNSto link the hostname with the assigned | P address,
the hostname may be used in place of the IP address. Otherwise, the hostname is not
usable and you may skip steps 2 through 4.

3. Usethelabeled text softkeys and/or numeric keypad to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.

4. PressEnter.

5. Set LAN Config Manual DHCP to DHCP.

Chapter 1 15

Getting Started
Using LAN

6. Pressthe Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action configures the signal generator asa DHCP client. In DHCP mode, the signal generator will
request a new IP address from the DHCP server upon rebooting. You can return to the LAN Setup menu
after rebooting to determine the assigned | P address.

7. Connect the signal generator to the LAN using a 10BASE-T LAN cable.

3. Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server using the
ping utility. Compare your ping response to those described in Table 1-12.

From a UNIX ® workstation, type:
pi ng <hostnane or | P address> 64 10

where <host nane or | P address> isyour instrument’s name or IP address, 64 is the packet size, and
10 isthe number of packets transmitted. Type nan pi ng at the UNIX prompt for details on the ping
command.

From the MS-DOS® Command Prompt or Windows environment, type:
ping -n 10 <hostnane or |P address>

where <host nane or | P address> isyour instrument’s name or |P address and 10 is the number of
echo requests. Type pi ng at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned | P address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the | P address to communicate with the signal

generator over the LAN.

UNIX is a registered trademark of the Open Group
MS-DOS is a registered trademark of Microsoft Corporation

16 Chapter 1

Table 1-12

Getting Started
Using LAN

Ping Responses

Normal Response for
UNIX

A normal response to the ping command will be atotal of 9 or 10 packets
received with aminimal average round-trip time. The minimal average will be
different from network to network. LAN traffic will cause the round-trip time
to vary widely.

Normal Response for
DOS or Windows

A normal response to the ping command will be atotal of 9 or 10 packets
received if 10 echo requests were specified.

Error Messages

If error messages appear, then check the command syntax before continuing
with troubleshooting. If the syntax is correct, resolve the error messages using
your network documentation or by consulting your network administrator.

If an unknown host error message appears, try using the |P address instead of
the hostname. Also, verify that the host name and IP address for the signal
generator have been registered by your I'T administrator.

Check that the hostname and | P address are correctly entered in the node
names database. To do this, enter t he nsl ookup <host nanme> command
from the command prompt.

No Response

If there is no response from a ping, no packets were received. Check that the
typed address or hostname matches the | P address or hostname assigned to the
signal generator in the System Utility > GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the signal
generator, starting with your workstation. If a node doesn’t respond, contact
your I T administrator.

If the signal generator still does not respond to ping, you should suspect a
hardware problem.

Intermittent Response

If you received 1 to 8 packets back, there maybe a problem with the network.
In networks with switches and bridges, thefirst few pings may be lost until the
these devices ‘learn’ the location of hosts. Also, because the number of
packets received depends on your network traffic and integrity, the number
might be different for your network. Problems of this nature are best resolved
by your IT department.

Chapter 1

17

Getting Started
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard. VXI-11 isan
instrument control protocol based on Open Network Computing/Remote Procedure Call (ONC/RPC)
interfaces running over TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service Request),
status byte reading, and DCAS (Device Clear State) over aLAN interface. This protocol isagood choicefor
migrating from GPIB to LAN asit has full Agilent VISA/SICL support. See the VXI website, www.vsi.org,
for more information and details on the specification.

Configuring for VXI-11

The Agilent 1/0 library has a program, I/0O Config, that is used to setup the computer/signal generator
interface for the V X1-11 protocol. Download the latest version of the Agilent 1/0 library from the Agilent
website. Refer to the Agilent 1/O library user manual, documentation, and Help menu for information on
running the 1/0 Config program and configuring the VX1-11 interface.

Usethe /O Config program to configure the LAN client. Once the computer is configured for aLAN client,
you can use the VX1-11 protocol and the VISA library to send SCPlI commands to the signal generator over
the LAN interface. Example programs for this protocol areincluded in “LAN Programming Examples’ on

page 67 of this programming guide.

NOTE For Agilent I/O library version J.01.0100, the “ Identify devicesat run-time” check box must
be unchecked. Refer to Figure 1-2.

18 Chapter 1

Getting Started

Using LAN
Figure 1-2 Show Devices Form
Show Devices | x| |
: oK
[~ ddentify devices at run-time:
Cancel
Devices present on interface GPIBT:
Add device

Remove device

Auto Add devices

Using Sockets LAN

Sockets LAN is a method used to communicate with the signal generator over the LAN interface using the
Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is afundamental technology used for
computer networking and allows applications to communicate using standard mechanisms built into
network hardware and operating systems. The method accesses a port on the signal generator from which
bidirectional communication with anetwork computer can be established.

Sockets LAN can be described as an internet address that combines Internet Protocol (1P) with adevice port
number and represents a single connection between two pieces of software. The socket can be accessed
using code libraries packaged with the computer operating system. Two common versions of socket libraries
are the Berkeley Sockets Library for UNIX systems and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is compatible
with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal generator is aso
compatible with other standard sockets APIs. The signal generator can be controlled using SCPI commands
that are output to a socket connection established in your program.

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

» Standard mode. Available on port 5025. Use this port for simple programming.
* TELNET mode. Thetelnet SCPI service is available on port 5023.

Chapter 1 19

Getting Started
Using LAN

NOTE The signal generator will accept referencesto telnet SCPI service at port 7777 and sockets
SCPI service at port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.

Using TELNET LAN

TELNET provides a means of communicating with the signal generator over the LAN. The TELNET client,
run on aLAN connected computer, will create alogin session on the signal generator. A connection,
established between computer and signal generator, generates a user interface display screen with SCPI >
prompts on the command line.

Using the TELNET protocol to send commandsto the signal generator is similar to communicating with the
signal generator over GPIB. You establish a connection with the signal generator and then send or receive
information using SCPI commands. Communication is interactive: one command at atime.

Using TELNET and MS-DOS Command Prompt

1. Onthe PC click Start > Programs > Command Prompt.

2. At the command prompt, typeint el net .

3. Pressenter. The TELNET display screen will be displayed.
4

. Click on the Connect menu then select Remote System. A connection form will be displayed. Refer to
Figure 1-3.

5. Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.
e Host Name- P address or hostname
» Port-5023
e Term Type-vt100

Figure 1-3 Connect Form

Host Name: |Instrument name j

Port: 5023 |

TermType: B[O -]
Connect | Cancel |

20 Chapter 1

6.
7.
8.

Getting Started
Using LAN

At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4 on page 22.
To signal device clear, press Ctrl-C on your keyboard.

Select Exit from the Connect menu and type exi t at the command prompt to end the TELNET session.

Using TELNET On a PC With a Host/Port Setting Menu GUI

1
2.
3.

Onyour PC click Start > Run.
Typet el net then click the Ok button. The TELNET connection screen will be displayed.

Click on the Connect menu then select Remote System. A connection form will be displayed. Refer to
Figure 1-3.

Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.
¢ Host Name-signal generator’s |P address or hostname

» Port-5023

¢ Term Type-vt100

At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4.

6. Tosignal device clear, press Ctrl-C.

Select Exit from the Connect menu to end the TELNET session.

Chapter 1 21

Getting Started

Using LAN
Figure 1-4 TELNET Window
R Telnet - fpvip1 s E3
Connect Edt Teminal Help
Agilent Technologies, E8254A SH-USOB0B000Y4
Firmware: Har 28 2881 11:23:18
Hostname: 8861p1
IP : 006 .p0O0 .00 .0BA
SCPI> =IDH?
figilent Technologies, E8254A, USO0000664, C.61.00
SCPI> =RST
SCPI> POW:AWPL -18 dbm
SCPI> POW?
-1.0800808A0E+001
scri> i
ced18a

The Standard UNIX TELNET Command

Synopsis
t el net [host [port]]

Description

This command is used to communicate with another host using the TELNET protocol. When the command
t el net isinvoked with host or port arguments, aconnection is opened to the host, and input is sent from

the user to the host.

Options and Parameters

Thecommandt el net operatesin character-at-a-time or line-by-line mode. In line-by-line mode, typed text
is echoed to the screen. When the line is completed (by pressing the Enter key), thetext line is sent to host .

In character-at-a-time mode, text is echoed to the screen and sent to host asit istyped. At the UNIX
prompt, type man t el net to view the options and parameters available with the t el net command.

22

Chapter 1

Getting Started
Using LAN

NOTE If your TELNET connection isin line-by-line mode, thereisno local echo. This meansyou
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your TELNET connection to character-by-character mode. Escape out of TELNET
and, at thet el net > prompt, type node char . If this does not work, consult your
TELNET program'’s documentation.

Unix TELNET Example

To connect to the instrument with host name nyl nst r unent and port number 5023, enter the following
command on the command line;
tel net nylnstrunent 5023

When you connect to the signal generator, the UNIX window will display awelcome message and a SCPI
command prompt. The instrument is now ready to accept your SCPI commands. As you type SCPI
commands, query results appear on the next line. When you are done, break the TELNET connection using
an escape character. For example, Ctrl -] ,where the control key and the] are pressed at the same time.

The following example shows TELNET commands:
$ tel net nyinstrument 5023

Trying....

Connected to signal generator

Escape character is ‘*]’

Agi | ent Technol ogi es, E4438C SN- US00000001
Fi r mwar e

Host nane: your instrunent

I P o XXX, XX. XXX. XXX

SCPI >

Using FTP

FTP alows usersto transfer files between the signal generator and any computer connected to the LAN. For
example, you can use FTP to download instrument screen images to a computer. When logged onto the
signal generator with the FTP command, the signal generator’s file structure can be accessed. Figure 1-5
shows the FTP interface and lists the directories in the signal generator’s user level directory.

NOTE File accessis limited to the signal generator’s / user directory.

Chapter 1 23

Getting Started
Using LAN

Figure 1-5 FTP Screen

% Command Prompt - ftp 000.000.00.000
=C=> Copyrights 1985-1996 Microsoft Corp.

C:\=fip 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-LIS00000004
220- Firmware: Mar.28.2001 11:23:18
220- Hostname: 0001p1

2z20- 1P : 000.000.00.000

220- FTP server =Version 1.0> readyw.
User <000.000.00.000:<none=>>:

331 Password required

Password:

230 Successful login

fip= 1s

200 Port command successful.

150 Opening data connection.
BACKUP

BIN

CAL

HTML

5YS

USER

226 Transfer complete.

35 bytes received in 0.00 seconds =35000.00 Kbytes/sec>
fitp> _

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1. OnthePC click Start > Programs > Command Prompt.
2. At the command prompt enter:

ftp<IP address >or <host nane >

At the user name prompt, press enter.

4. At the password prompt, press enter.

ce917a

You are now in the signal generator’s user directory. Typing help at the command prompt will show you

the FTP commands that are avail able on your system.
Typequi t or bye to end your FTP session.

6. Typeexit toendthecommand prompt session.

24

Chapter 1

Getting Started
Using RS-232

Using RS-232

The RS-232 serial interface can be used to communicate with the signal generator. The RS-232 connection
is standard on most PCs and can be connected to the signal generator’s rear-panel connector using the cable
described in Table 1-13 on page 26. Many functions provided by GPIB, with the exception of indefinite
blocks, serial polling, GET, non-SCPI remote languages, and remote mode are available using the RS-232
interface.

The serial port sends and receives data one bit at atime, therefore RS-232 communication is slow. The data
transmitted and received isusually in ASCII format with SCPI commands being sent to the signal generator
and ASCI| datareturned.

1. Selecting 1/0 Libraries for RS-232

The /O libraries can be downloaded from the National Instrument website, www.ni.com, or Agilent’s
website, www.agilent.com. The following is adiscussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive I/O library that can be used to control the
signal generator over the RS-232 interface. This library has many low level functions
that can be used in BASIC applications to control the signal generator over the RS-232
interface.

VISA VISA isan /O library used to develop 1/O applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISA and Agilent VISA librariesare similar
implementations of VISA and have the same commands, syntax, and functions. The
differences are in the lower level /O libraries used to communicate over the RS-232;
NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 1/O libraries can be used to devel op applications for the RS-232 interface. See
National Instrument’s website for information on NI1-488.2.
SICL Agilent SICL can be used to develop applications for the RS-232 interface. See

Adgilent’s website for information on SICL.

Chapter 1 25

Getting Started
Using RS-232

2. Setting Up the RS-232 Interface

1. Press Utility > GPIB/RS-232 LAN> RS-232 Setup > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the baud rate of
your computer or UNIX workstation or adjust the baud rate settings on your computer to match the baud
rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to the signal
generator and prints them to the display.

3. Connect an RS-232 cable from the computer’s serial connector to the signal generator’'s AXILLARY
INTERFACE connector. Refer to Table 1-13 for RS-232 cable information.

Table 1-13 RS-232 Serial Interface Cable
Quantity Description Agilent Part Number
1 Serial RS-232 cable 9-pin (male) to 9-pin 8120-6188
(female)
NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wirespins 2, 3, 5, 7,
and 8 may be used.

26 Chapter 1

Getting Started
Using RS-232

3. Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator and perform the following steps:

1. OnthePC click Start > Programs > Accessories > HyperTerminal.

2. Select HyperTerminal.

3. Enter aname for the session in the text box and select an icon.

4. Select COM1 (COM2 can beused if COM1 is unavailable).

5. Inthe COM1 (or COM?2, if selected) properties, set the following parameters:

e Bits per second: 9600 must match signal generator’s baud rate; On the signal generator Select
Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Baud Rate > 9600.

« Databits: 8
e Parity: None
e Sopbhits: 1

* Flow Control: None

NOTE Flow control, viathe RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore thisif flow control is set to None. However,
to control the signal generator programmatically or download files to the signal
generator, you must enable RTS-CTS (hardware) flow control on the controller. Note
that only the RTSlineis currently used.

6. Go to the HyperTerminal window and select File > Properties

7. Go to Settings > Emulation and select VT100.

8. LeavetheBackscroll buffer lines set to the default value.

9. Go to Settings > ASCII Setup.

10. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPl command *1 DN? fol | owed by <Ctrl j> inthe
HyperTerminal window. The<Ctrl j >isthe new line character (on the keyboard press the Cntrl key and
the] key simultaneously).

The signal generator should return a string similar to the following, depending on model:

Agilent Technologies <instrument model name and number>, US40000001, C. 02. 00

Chapter 1 27

Getting Started
Using RS-232

Character Format Parameters
The signal generator uses the following character format parameters when communicating via RS-232:
» Character Length: Eight data bits are used for each character, excluding start, stop, and parity bits.

» Parity Enable; Parity is disabled (absent) for each character.
» Stop Bits: One stop hit isincluded with each character.

If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal generator.
2. Verify that the RS-232 cable isidentical to the cable specified in Table 1-13.

3. Verify that the application is using the correct computer COM port and that the RS-232 cable is properly
connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.

28 Chapter 1

2 Programming Examples

This chapter provides the following major sections:
» “Using the Programming Examples’ on page 30
» “GPIB Programming Examples’ on page 32
* “LAN Programming Examples’ on page 67
e “RS$-232 Programming Examples’ on page 105

29

Programming Examples
Using the Programming Examples

Using the Programming Examples

The programming examples for remote control of the signal generator use the GPIB, LAN, and RS-232
interfaces and demonstrate instrument control using different I/O libraries and programming languages.
Many of the example programsin this chapter are interactive; the user will be prompted to perform certain
actions or verify signal generator operation or functionality. Example programs are written in the following
languages:

e Agilent BASIC

e C/C++
« Java
« PERL

See Chapter 1 of this programming guide for information on interfaces, 1/O libraries, and programming
languages.

The example programs are also available on the ESG Documentation CD-ROM, allowing you to cut and
paste the examplesinto a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Local key, are disabled. Pressthe Local key to revert to manual operation.

NOTE To update the signal generator’s front panel display so that it reflects remote command
setups, enable the remote display: press Utility > Display > Update in Remote Off On softkey
until On is highlighted or send the SCPI command :DISPlay:REMote ON. For faster test
execution, disable front panel updates.

Programming Examples Development Environment

The C/C++ examples in this guide were written using an |BM-compatible personal computer (PC) with the
following configuration:

« Pentium® processor
* Windows NT 4.0 operating system
e C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

Pentium is a U.S. registered trademark of Intel Corporation

30 Chapter 2

Programming Examples
Using the Programming Examples

» National Instruments PCl- GPIB interface card or Agilent GPIB interface card
« National Instruments VISA Library or Agilent VISA library

e COM1 or COM2 seria port available

* LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation.

Running C/C++ Programming Examples

To run the example programs written in C/C++ you must include the required files in the Microsoft Visual
C++ 6.0 project.

If you are using the VISA library do the following:

» addthevisa32.lib file to the Resource Files

* add thevisah fileto the Header Files

If you are using the NI-488.2 library do the following:
* add the GPIB-32.0BJfile to the Resource Files

» add thewindows.h file to the Header Files

» add the Deci-32.hfile to the Header Files

Refer to the National Instrument website for information on the NI-488.2 library and file requirements. For
information on the VISA library see the Agilent website or National Instrument’s website.

Chapter 2 31

Programming Examples
GPIB Programming Examples

GPIB Programming Examples

“Interface Check using Agilent BASIC” on page 33

» “Interface Check Using NI1-488.2 and C++” on page 34

» “Interface Check using VISA and C” on page 35

* “Loca Lockout Using Agilent BASIC” on page 36

e “Local Lockout Using NI-488.2 and C++" on page 38

* “Queries Using Agilent BASIC” on page 39

* “Queries Using NI1-488.2 and C++" on page 41

* “QueriesUsing VISA and C” on page 44

* “Generating aCW Signal Using VISA and C” on page 46

* “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 48
* “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 51
* “Generating a Step-Swept Signal Using VISA and C” on page 53

» “Saving and Recalling States Using VISA and C” on page 54

» “Reading the Data Questionable Status Register Using VISA and C” on page 57
» “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 62

Before Using the Examples

If the Agilent GPIB interface card is used, then the Agilent VISA library should be installed along with
Adgilent SICL. If the National Instruments PCI-GPIB interface card is used, the NI-VISA library along with
the NI-488.2 library should be installed. Refer to “2. Selecting /O Libraries for GPIB” on page 7 and the
documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is addressed at 7 and
the signal generator at 19. The GPIB address designator for other librariesistypically
GPIBO or GPIB1.

32 Chapter 2

Programming Examples
GPIB Programming Examples

Interface Check using Agilent BASIC

This simple program causes the signal generator to perform an instrument reset. The SCPI command * RST
places the signal generator into a pre-defined state and the remote annunciator (R) appears on the front panel

display.
The following program example is available on the ESG Documentation CD-ROM as basicex1.txt.

10 [k kR ko ko Kk ko ko Kk Kk Kk Kk Kk Kk Kk kR Rk kR kR kR kR kR Rk kR kR kR Rk
20 !

30 I PROGRAM NAME: basi cex1. t xt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the GPIB connections and

60 ! interface are functional.

70 !

80 I Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the foll ow ng commands and then
120 I RUN the program

130 !

LAQ I KEE AR R KRR A KRR KRR AR KR KRR R R KA KRR KRR AR R KK R AR R KRR AR R AR XAk
150 !

160 Si g_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local node

180 CLEAR Sig_gen ! Cears any pending data |I/O and resets the parser

190 REMOTE 719 I Puts the signal generator into renmpte node

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 QUTPUT Sig_gen;"*RST" | Places the signal generator into a defined state

230 PRI NT "The signal generator should now be in REMOTE."

240 PRI NT

250 PRINT "Verify that the remote [R] annunciator is on. Press the "“Local' key, "
260 PRINT "on the front panel to return the signal generator to local control."

270 PRI NT

Chapter 2 33

Programming Examples
GPIB Programming Examples

280 PRINT "Press RUN to start again."
290 END ! Program ends

Interface Check Using NI-488.2 and C++

This example uses the NI1-488.2 library to verify that the GPIB connections and interface are functional .
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the ESG Documentation CD-ROM as niex1.cpp.

J] RA R Rk Rk Rk Rk Rk kR kR kR Rk kR kR Rk Rk Rk kR Rk kR Rk Rk Rk Rk Rk Rk Rk Rk Rk ok
/1

/1 PROGRAM NAME: ni ex1.cpp

/1

/1 PROGRAM DESCRI PTI ON: This programverifies that the GPIB connections and

/1 interface are functional.

/1

/1 Connect a GPIB cable fromthe PC GPIB card to the signal generator

/'l Enter the following code into the source .cpp file and execute the program

/1

// khkkkhkkhkkhkkhkhkhkhhkrbhhhhkhkhkhkhkhk kA kA kA kA Ak hkkk k%%

#i ncl ude "stdafx. h"

#i ncl ude <i ostreanv
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std;

int GPl BO= 0; /1 Board handl e
Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

34 Chapter 2

Programming Examples
GPIB Programming Examples

int sig; /] Declares a device descriptor variable
sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); /1 Sends device clear nessage to signal generator

ibwt(sig, "*RST", 4); /1 Places the signal generator into a defined state

/1 Print data to the output w ndow
cout << "The signal generator should now be in REMOTE. The renote indicator"<<endl

cout <<"annunci ator R should appear on the signal generator display"<<endl
return O

}

Interface Check using VISA and C

This program uses VISA library functions and the C language to communicate with the signal generator.
The program verifies that the GPIB connections and interface are functional. Launch Microsoft Visual C++
6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex1.cpp.

[RR Rk Rk Rk Rk kR kR kR kR Rk kR kR kR Rk kR Rk Rk kR kR Rk Rk Rk kR Rk Rk Rk Rk Rk
/1 PROGRAM NAME: vi saexl. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e programverifies that the GPIB connections and

/1 and interface are functional

/1 Turn signal generator power off then on and then run the program

/1

] R R Kk kK ok ok kK K ok ok kK Kk ok o kK Kk ok o kK R ok ok o kR R ok ok kR ok ok o kR R ok ok R Rk ok R R R ok ok R R R ok ok kR R Rk kK

#i ncl ude <vi sa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"

#i ncl ude <stdlib. h>

Chapter 2 35

Programming Examples
GPIB Programming Examples

void main ()

{

Vi Sessi on defaul tRM vi; /'l Declares a variable of type Vi Session

/1 for instrunent conmmunication

Vi Status vi Status = 0;

/1 Opens a session to the GPIB device

/] at address 19
vi St at us=vi OpenDef aul t RM &def aul t RM ;

vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI _NULL, WVI_NULL, &vi);

i f(viStatus){

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); /1 initializes signal generator
// prints to the output w ndow

printf("The signal generator should now be in REMOTE. The renote
i ndi cator\n");

printf("annunci ator R shoul d appear on the signal generator display\n");

printf("\n");

vi Cl ose(vi); /] cl oses session

vi Cl ose(defaul tRM ; /'l closes default session
}

Local Lockout Using Agilent BASIC

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal

generator keys.

The following program example is available on the ESG Documentation CD-ROM as basicex2.txt.

10 | **kdkkkhkhhrrrrrrrrrrrrdddi

20 !

30 ! PROGRAM NAME: basi cex2. t xt

36 Chapter 2

Programming Examples
GPIB Programming Examples

40 !

50 I PROGRAM DESCRI PTION: I n REMOTE nbde, access to the signal generators

60 ! functional front panel keys are disabl ed except for
70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command wil |l disable the Local key.

90 ! The LOCAL conmmand, executed fromthe controller, is then
100 ! the only way to return the signal generator to front panel,
110 ! Local, control.

120 I KEEAE AR R AR A KK R R KRR KRR KRR AR KR K KRR KR KK R AR R R KRR AR R AR XAk
130 Si g_gen=719 | Declares a variable to hold signal generator address

140 CLEAR Sig_gen | Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in |ocal node

160 REMOTE Si g_gen I Places the signal generator in renpte node

170 CLEAR SCREEN I Clears the controllers display

180 QUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state
190 ! The followi ng print statenents are user pronpts

200 PRI NT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R and 'L' annunciators are visable"

220 PRINT ".......... Press Conti nue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT node

250 PRI NT ! Prints user pronpt nessages

260 PRI NT "Si gnal generator should now be in LOCAL LOCKOUT node. "

270 PRI NT

280 PRINT "Verify that all keys including “Local' (except Contrast keys) have no effect."
290 PRI NT

300 PRINT ".......... Press Conti nue"

310 PAUSE

320 PRI NT

330 LOCAL 7 I Returns signal generator to Local control

340 ! The followi ng print statements are user pronpts

350 PRI NT "Si gnal generator should now be in Local npde."

Chapter 2

37

Programming Examples
GPIB Programming Examples

360 PRI NT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."
380 PRI NT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++

This example uses the N1-488.2 library to set the signal generator local lockout mode. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as niex2.cpp.

J] RR kR kR k kR ko Rk Rk kR Rk kR Rk kR kR kR kR Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk k
/1 PROGRAM NAME: ni ex2.cpp

/1

/1 PROGRAM DESCRI PTI ON: This programw || place the signal generator into

/1 LOCAL LOCKOUT node. All front panel keys, except the Contrast key, will be disabled
/1 The local command, 'ibloc(sig)' executed via programcode, is the only way to

/1 return the signal generator to front panel, Local, control

// khkkhkkhkkhkkhkkhkhkhkhhhrhrhkhkhhkhkhk kA Ak kA kkk k%

#i ncl ude "stdaf x. h"
#i ncl ude <i ostreanv
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std

int GPlIBO= 0; /1 Board handl e
Addr 4882_t Address[31]; /] Declares a variable of type Addr4882_t
int main()
{
int sig; /'l Declares variable to hold interface descriptor

sig = ibdev(0, 19, 0, 13, 1, 0); /1l Opens and initialize a device descriptor

38 Chapter 2

Programming Examples
GPIB Programming Examples

ibclr(sig); /1 Sends GPIB Selected Device Clear (SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state
cout << "The signal generator should now be in REMOTE. The renote nbpde R "<<endl;
cout <<"annunci ator shoul d appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n");

Sendl FC(GPI BO) ; /!l Resets the GPIB interface
Addr ess[0] =19; /1 Signal generator's address
Addr ess[1] =NOADDR; /1l Signifies end element in array. Defined in

/1 DECL-32.H
Set RALS(GPI BO, Address); /1 Places device in Renpte with Lockout State.

cout << "The signal generator should now be in LOCAL LOCKQUT. Verify that all
keys" <<endl ;

cout<< "including the 'Local' key are disabled (Contrast keys are not
af f ect ed) " <<endl ;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n");

ibloc(sig); /1 Returns signal generator to |local control
cout <<endl ;

cout <<"The signal generator should now be in |ocal node\n";

return 0;}

}

Queries Using Agilent BASIC

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark asin the identify
command * | DN?

The following program example is available on the ESG Documentation CD-ROM as basicex3.txt.

10
20
30
40
50

| **kkkkhkhkhhhdhdhhhhhrrrrrrrrrrr b rdddd*
|

I PROGRAM NAME: basi cex3. t xt

|

! PROGRAM DESCRIPTION: In this exanple, query comrands are used with response

Chapter 2 39

Programming Examples
GPIB Programming Examples

60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the follow ng program

90 !

100 D EFEEE Rk Rk ko k kA k ko k ko k Kk Kk kR kR Kk kR kR kR kR kR kR Rk kR kR kR kR Rk Rk Rk
110 !

120 DI M A3$[10], C3$[100] , D$[10] ! Declares variables to hold string response data
130 | NTEGER B | Declares variable to hold integer response data
140 Sig_gen=719 ! Declares variable to hold signal generator address
150 LOCAL Sig_gen I Puts signal generator in Local node

160 CLEAR Si g_gen | Resets parser and clears any pending out put

170 CLEAR SCREEN ! Clears the controller’s display

180 QUTPUT Si g_gen; "*RST" I Puts signal generator into a defined state

190 OQUTPUT Si g_gen; " FREQ CwWp" ! Querys the signal generator CWfrequency setting
200 ENTER Si g_gen; F I Enter the CWfrequency setting

210 ! Print frequency setting to the controller display

220 PRI NT "Present source CWfrequency is: ";F/ 1. E+6;" Miz"

230 PRI NT

240 OQUTPUT Si g_gen; "POW AMPL?" | Querys the signal generator power |evel

250 ENTER Si g_gen; W | Enter the power |evel

260 ! Print power level to the controller display

270 PRI NT "Current power setting is: ";W"dBM

280 PRI NT

290 QUTPUT Si g_gen;"FREQ MODE?" ! Querys the signal generator for frequency node

300 ENTER Si g_gen; A$! Enter in the node: CW Fixed or List

310 ! Print frequency node to the controller display

320 PRI NT "Source's frequency node is: ";A$

330 PRI NT

340 QUTPUT Si g_gen; " OUTP OFF" I Turns signal generator RF state off

350 QUTPUT Si g_gen; " OUTP?" ! Querys the operating state of the signal generator
360 ENTER Si g_gen; B I Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display

40 Chapter 2

Programming Examples
GPIB Programming Examples

380 I F B>0 THEN

390 PRI NT "Signal Generator output is: on"

400 ELSE

410 PRI NT "Signal Generator output is: off"

420 END | F

430 QUTPUT Sig_gen;"*I| DN?" I Querys for signal generator ID
440 ENTER Si g_gen; C$! Enter in the signal generator |ID
450 ! Print the signal generator IDto the controller display

460 PRI NT

470 PRI NT "This signal generator is a ";C$

480 PRI NT

490 ! The next conmand is a query for the signal generator's GPIB address
500 OQUTPUT Si g_gen; " SYST: COWM GPI B: ADDR?"

510 ENTER Si g_gen; D$! Enter in the signal generator's address
520 I Print the signal generator's GPIB address to the controllers display
530 PRINT "The GPIB address is "; D$

540 PRI NT

550 ! Print user pronpts to the controller's display

560 PRI NT "The signal generator is now under |ocal control"

570 PRINT "or Press RUNto start again."

580 END

Queries Using NI-488.2 and C++

This example uses the NI1-488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as niex3.cpp.

[R R R KRR KRR KRR KRR KRR KRR KRR KRR KRR KRR R KRR KRR KK KKK Rk
/1 PROGRAM NAME: ni ex3. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denponstrates the use of query conmands

/1

/1 The signal generator can be queried for conditions and instrunent states

Chapter 2 41

Programming Examples
GPIB Programming Examples

/1
/1
/1
/1

#i
#i
#i
#i
us
in

Ad

in

These commands are of the type "*IDN?" where the question mark indicates

a query.

khkkhkkhkhkkhkkhhhkhkhhhkhhrrrhr kA kA Ak Ak kA Ak kA k k%%

ncl ude "stdafx. h"
ncl ude <i ostreane
ncl ude "wi ndows. h"

ncl ude "Decl -32. h"

i ng namespace std;

t GPI BO= 0; /1 Board handl e

dr4882_t Address[31]; /1l Declare a variable of type Addr4882_t

t main()

int sig; /1 Declares variable to hold interface descriptor
int num

char rdVval [100]; /| Declares variable to read instrunent responses

sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor

ibloc(sig); /1 Places the signal generator in |ocal node
ibclr(sig); /'l Sends Sel ected Device C ear(SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state

ibwt(sig, ":FREQuency: CW",6 14); // Querys the CWfrequency

ibrd(sig, rdval, 100); /!l Reads in the response into rdVal
rdval [i bentl] = '"\0"; /1 Null character indicating end of array
cout <<"Source CWfrequency is "<<rdVal; /1 Print frequency of signal generator

cout <<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, "POWAMPL?",10); /1l Querys the signal generator
ibrd(sig, rdval, 100); /'l Reads the signal generator power |evel
rdval [i bentl] = "\0"; /1 Null character indicating end of array

42

Chapter 2

Programming Examples
GPIB Programming Examples

/1 Prints signal generator power |evel
cout <<"Source power (dBm is : "<<rdVal;
cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, ":FREQ MODE?", 11); /1 Querys source frequency node
ibrd(sig, rdval, 100); /1l Enters in the source frequency node
rdval [i bentl] = '"\0"; /1 Null character indicating end of array

cout <<"Source frequency node is "<<rdVal; // Print source frequency node
cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, "OUTP OFF", 12); /1 Turns off RF source
ibwt(sig, "OUTP?",5); /'l Querys the on/off state of the instrument
ibrd(sig,rdval, 2); /1 Enter in the source state

rdval [i bentl] = '"\0";
num = (int (rdval[0]) -('0"));
if (num > 0){
cout<<"Source RF state is : On"<<endl;
}el se{

cout<<"Source RF state is : Of"<<endl;}

cout <<endl ;

ibwt(sig, "*IDN?",5); /1 Querys the instrument ID

ibrd(sig, rdval, 100); /! Reads the source ID

rdval [i bentl] = '"\0"; /1 Null character indicating end of array
cout<<"Source IDis : "<<rdVal; [// Prints the source ID

cout <<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwrt(sig, "SYST: COM GPI B: ADDR?", 20); //Querys source address

ibrd(sig, rdval, 100); /'l Reads the source address

rdval [i bentl] = "\0"; /1 Null character indicates end of array
/1 Prints the signal generator address

cout <<"Source GPIB address is : "<<rdVal;

cout <<endl ;

Chapter 2 43

Programming Examples
GPIB Programming Examples

cout<<"Press the 'Local' key to return the signal generator to LOCAL control " <<endl
cout <<endl

return 0

}
Queries Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex3.cpp.

R R T R T T T T T T o
/1 PROGRAM FI LE NAME: vi saex3. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query commands. The signa

/'l generator can be queried for conditions and instrunent states. These comands are of

/1 the type "*IDN?"; the question mark indicates a query.

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanv
#i ncl ude <coni o. h>
#i ncl ude <stdlib. h>

usi ng namespace std

void main ()

{

Vi Sessi on defaul tRM vi; /1 Decl ares variables of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0; /1 Declares a variable of type Vi Status
/1 for GPIB verifications

char rdBuffer [256]; /] Declares variable to hold string data

44 Chapter 2

Programming Examples
GPIB Programming Examples

int num /] Declares variable to hold integer data

/1 Initialize the VISA system
vi St at us=vi OpenDef aul t RM &def aul t RM ;

/1 Open session to GPIB device at address 19

vi St at us=vi Open(defaul tRM "GPl B::19::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus)({ /1 |f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}
viPrintf(vi, "*RST\n"); /] Resets signal generator
viPrintf(vi, "FREQ CW\n"); /'l Querys the CWfrequency
vi Scanf (vi, "%", rdBuffer); /! Reads response into rdBuffer

/1 Prints the source frequency
printf("Source CWfrequency is : %\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); /1 Prints new line character to the
getch();

viPrintf(vi, "PONAMPL?AN"); /'l Querys the power |evel

vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer

/1 Prints the source power |evel
printf("Source power (dBm) is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1l Prints new |line character to the
getch();
viPrintf(vi, "FREQ MODE?\n"); /'l Querys the frequency node
vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer
/1 Prints the source freq node
printf("Source frequency node is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1l Prints new |line character to the

getch();

di spl ay

di spl ay

di spl ay

Chapter 2

45

Programming Examples
GPIB Programming Examples

viPrintf(vi, "OUTP OFF\n"); /1 Turns source RF state off
viPrintf(vi, "OUTP?\n"); /1l Querys the signal generator's RF state
vi Scanf (vi, "%i", &un); /'l Reads the response (integer val ue)

/1 Prints the on/off RF state
if (num> 0) {
printf("Source RF state is : on\n");
}el sef
printf("Source RF state is : off\n");
}

/1 O ose the sessions

vi Cl ose(vi);
vi Cl ose(defaul tRVM ;
}

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set for a
CW frequency of 500 kHz and a power level of —2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex4.cpp.

R R T R T T T T T
/1 PROGRAM FI LE NAME: Vi saex4. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denonstrates query comrands. The signal generator
/1 frequency and power |evel.

/1 The RF state of the signal generator is turn on and then the state is queried. The

/'l response will indicate that the RF state is on. The RF state is then turned off and
/1 queried. The response should indicate that the RF state is off. The query results are
/1 printed to the to the display w ndow.

/1

] R R KKk kK ok ok kK K ok ok kK Kk ok o kK Kk ok o kK R ok ok o kR K ok ok sk kR ok ok o kR ok ok o R R ok kR R R ok ok R R R ok ok kR Rk kK

#i ncl ude " St dAf x. h"

46 Chapter 2

Programming Examples
GPIB Programming Examples

#i ncl ude <vi sa. h>
#i ncl ude <i ostreanp
#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM i ; /| Declares variables of type Vi Session
[/ for instrument conmunication

Vi Status vi Status = 0; /| Declares a variable of type Vi Status
/1 for GPIB verifications

char rdBuffer [256]; /1l Declare variable to hold string data

int num /] Declare variable to hold integer data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA system

/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problems then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

viPrintf(vi, "*RST\n"); /'l Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CWfrequency for 500 kHz
viPrintf(vi, "FREQ CWP\n"); /1l Query the CWfrequency

vi Scanf (vi, "%", rdBuffer); /1 Read signal generator response
printf("Source CWfrequency is : %\n", rdBuffer); // Print the frequency
viPrintf(vi, "PONWAWMPL -2.3 dBmin"); // Set the power level to -2.3 dBm
viPrintf(vi, "POWAWMPL?\n"); /'l Query the power |eve

vi Scanf (vi, "%", rdBuffer); /1 Read the response into rdBuffer

printf("Source power (dBm) is : %\n", rdBuffer); // Print the power |eve

Chapter 2 47

Programming Examples
GPIB Programming Examples

viPrintf(vi, "OUTP: STAT ON\\n"); // Turn source RF state on
viPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &un); /'l Read the response (integer val ue)
/1 Print the on/off RF state
if (num> 0) {
printf("Source RF state is : on\n");
}el sef
printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
vi C ear(vi);
vi Printf(vi,"OUTP: STAT OFF\n"); // Turn source RF state off
viPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &nun); /! Read the response
/1 Print the on/off RF state
if (num>0) {
printf("Source RF state is now. on\n");
}el se{
printf("Source RF state is now off\n");
}
/1 Cose the sessions
printf("\n");
vi C ear(vi);
vi Gl ose(vi);
vi Cl ose(defaul tRM ;
}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency of

48 Chapter 2

Programming Examples
GPIB Programming Examples

700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running the program:

» Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
» Set the modulation signal source for the desired FM characteristics.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex5.cpp.

R T R T T T T T
/1 PROGRAM FI LE NAME: vi saex5. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e sets the signal generator FM source to External 2,

/1 coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power |eve

/l to -2.5 dBm The RF state is set to on

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanv
#i nclude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM i ; /| Declares variables of type Vi Session
[/ for instrument conmunication

Vi Status vi Status = 0; /| Declares a variable of type Vi Status

/1 for GPIB verifications
/1 Initialize VISA session
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/] open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI _NULL, VI_NULL, &vi);

if(viStatus){ /1 1f problenms, then pronpt user

Chapter 2 49

Programming Examples
GPIB Programming Examples

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC coupled FM signal\n");

printf("Press any key to continue\n");

printf("\n");
getch();
printf("\n");
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "FM SOUR EXT2\n"); /] Sets EXT 2 source for FM
viPrintf(vi, "FM EXT2: COUP AC\n"); /1l Sets FM path 2 coupling to AC
viPrintf(vi, "FMDEV 20 kHz\n"); /'l Sets FM path 2 deviation to 20 kHz
viPrintf(vi, "FREQ 700 MHz\n"); /'l Sets carrier frequency to 700 MHz
viPrintf(vi, "POWAWL -2.5 dBmn"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM STAT O\\n"); /1 Turns on frequency nodul ation
viPrintf(vi, "OUTP: STAT ON\\n"); /1 Turns on RF output

/1 Print user infornmation
printf("Power level : -2.5 dBmn");
printf("FM state : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 700 MHZ\n");
printf("Deviation : 20 kHzZ\n");
printf("EXT2 and AC coupling are selected\n");
printf("\n"); /1 Prints a carrage return

/1 O ose the sessions
vi Gl ose(vi);
vi Cl ose(defaul tRM ;
}

50 Chapter 2

Programming Examples
GPIB Programming Examples

Generating an Internal AC-Coupled FM Signal Using VISA and C

In this example the VISA library is used to generate an ac-coupled internal FM signal at a carrier frequency
of 900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and the peak deviation will be 100
kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp

source file.

The following program example is available on the ESG Documentation CD-ROM as visaex6.cpp.

//**

/1 PROGRAM FI LE NAME: vi saex6. cpp

/1

/1 PROGRAM DESCRI PI ON: Thi s exanpl e ge
/Il MHz carrier frequency and a power
/1 deviation 100 kHz

/1

nerates an AC-coupled interna

| evel of

FM si gna

at

a 900

-15 dBm The FMrate is 5 kHz and the peak

] R KKk kK ok ok kK Kk ok kK Kk ok kK K ok ok o kK R ok ok o kR R ok ok kR R ok ok kR R ok ok R R ok ok R R R ok ok R R Rk ok kR R Rk kK

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanp
#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; I
/1

Vi Status vi Status = O; I
/1

vi St at us=vi OpenDef aul t RM &def aul t RM ;
/'l open
vi St at us=vi Open(defaul tRM "GPIB:: 19

if(viStatus)({

Decl ares variabl es of type Vi Session
for instrument communication

Decl ares a variable of type Vi Status
for GPIB verifications

/1 Initialize VISA session

session to gpib device at address 19
SINSTR', VI _NULL, VI _NULL, &i);

/1 1f problenms, then pronpt user

Chapter 2

51

Programming Examples
GPIB Programming Examples

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

vi C ear(vi); /1 Clears the signal generator
viPrintf(vi, "*RST\n"); /1l Resets the signal generator

viPrintf(vi, "FM2:INT: FREQ 5 kHz\n"); // Sets EXT 2 source for FM

viPrintf(vi, "FM2:DEV 100 kHz\n"); /1 Sets FMpath 2 coupling to AC
viPrintf(vi, "FREQ 900 MHz\n"); /'l Sets carrier frequency to 700 MHz
viPrintf(vi, "POW-15 dBmn"); /] Sets the power level to -2.3 dBm
viPrintf(vi, "FM2:STAT O\N\n"); /1 Turns on frequency nodul ation
viPrintf(vi, "OUTP: STAT OM\n"); /1 Turns on RF out put

printf("\n"); /1 Prints a carriage return

/1 Print user information

printf("Power level : -15 dBmn");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 900 MHZ\n");

printf("Deviation : 100 kHzZ\n");

printf("Internal nodulation : 5 kHz\n");

printf("\n"); /1l Print a carrage return

/1 Close the sessions
vi Cl ose(vi);
vi Cl ose(defaul tRM ;
}

52 Chapter 2

Programming Examples
GPIB Programming Examples

Generating a Step-Swept Signal Using VISA and C

In thisexample the VISA library is used to set the signal generator for a continuous step sweep on a defined
set of points from 500 MHz to 800 MHz. The number of stepsis set for 10 and the dwell time at each stepis
set to 500 ms. The signal generator will then be set to local mode which allows the user to make adjustments
from the front panel. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code
into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex7.cpp.

[R R Rk Rk Rk Rk kR kR Kk kR Rk Rk kR kR Rk kR Rk kR Rk kR Rk Rk Rk kR Rk R Rk Rk Rk
/1 PROGRAM FI LE NAME: vi saex7. cpp

/1

/1 PROGRAM DESCRI PTI ON: This exanmple will programthe signal generator to performa step

/1 sweep from500-800 MHz with a .5 sec dwell at each frequency step.

/1

//**

#i ncl ude <vi sa. h>
#i ncl ude " St dAf x. h"

#i ncl ude <i ostreanp

void main ()

{

Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session
/1 vi establishes instrument communication

Vi Status viStatus = 0;// Declares a variable of type Vi Status

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaultRM; // Initialize VISA session
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(visStatus){// If problems, then pronpt user
printf("Could not open Vi Session!\n");

printf("Check instruments and connections\n");

Chapter 2 53

Programming Examples
GPIB Programming Examples

printf("\n");

exit(0);}

vi C ear(vi); /1 Clears the signal generator
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "*CLS\n"); /1 Clears the status byte register
viPrintf(vi, "FREQ MODE LIST\n"); /] Sets the sig gen freq node to |ist
viPrintf(vi, "LIST: TYPE STEP\n"); /] Sets sig gen LIST type to step

viPrintf(vi, "FREQ STAR 500 MHz\n"); // Sets start frequency
viPrintf(vi, "FREQ STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:PON 10\ n"); /1 Sets nunmber of steps (30 nHz/step)
viPrintf(vi, "SWEDWEL .5 S\n"); /1l Sets dwell tine to 500 ns/step
viPrintf(vi, "PONAMPL -5 dBm n"); /] Sets the power level for -5 dBm
viPrintf(vi, "OUTP: STAT ON\\n"); /1 Turns RF output on

viPrintf(vi, "INIT: CONT O\Mn"); /1 Begins the step sweep operation

/1 Print user information

printf("The signal generator is in step sweep node. The frequency range
is\n");
printf("500 to 800 nHz. There is a .5 sec dwell tine at each 30 nHz
step.\n");
printf("\n"); /1 Prints a carriage return/line feed
viPrintf(vi, "OUTP: STAT OFF\n"); /1 Turns the RF output off
printf("Press the front panel Local key to return the\n");
printf("signal generoator to manual operation.\n");
/'l Coses the sessions
printf("\n");

vi G ose(vi);
vi Cl ose(defaul tRM ;
}

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings can then
be recalled separately; either from the keyboard or from the signa generator’sfront panel. Launch Microsoft

54 Chapter 2

Programming Examples
GPIB Programming Examples

Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex8.cpp.

] R R Rk R kR kR kK kK kR Rk kR kR kR Rk kR Rk kR Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk
/1 PROGRAM FI LE NAME: vi saex8. cpp

/1

/1 PROGRAM DESCRI PTION: I n this exanple, instrunent settings are saved in the signa

/! generator's registers and then recalled

/1 Instrunent settings can be recalled fromthe keyboard or, when the signal generator
/1 is put into Local control, fromthe front panel

/1 This programw |l initialize the signal generator for an instrunent state, store the
/1l state to register #1. An *RST conmmand will reset the signal generator and a *RCL

/1 command will return it to the stored state. Following this renote operation the user
/1 will be instructed to place the signal generator in Local nopde

/1

//**

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanp

#i ncl ude <coni o. h>

void main ()
{
Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session
/1 for instrunent communication
Vi Status viStatus = 0;// Declares a variable of type Vi Status
/1 for GPIB verifications

| ong | ngbone = 0; /1 Operation conplete flag

vi St at us=vi OpenDef aul t RM &def aul t RM) ; /1 Initialize VISA session
/1 Open session to gpib device at address 19

vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, WVI_NULL, &vi);

Chapter 2 55

Programming Examples
GPIB Programming Examples

if(viStatus){// If problens, then pronpt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");
exit(0);}
printf("\n");
vi C ear(vi);

viPrintf(vi, "*CLS\n");

printf("Progranm ng exanpl e using the

printf("used to save and recall
printf("\n");

viPrintf(vi, "*RST\n");
viPrintf(vi, "FREQ 5 MHz\n");

viPrintf(vi, "POWALC OFF\n");

vi Printf(vi

vi Printf(vi, "OUTP: STAT ON\n");
viPrintf(vi, "*0OPC?\n");
while (!l ngDone)

vi Scanf (vi ,"%l", & ngDone) ;
viPrintf(vi, "*SAV 1\n");

printf("The current signal generator operating state will be saved\n");

"PON AMPL -3.2 dBmn");

/1 Clears the signal generator

/'l Resets the status byte register

/1 Print user information

*SAV, * RCL SCPI commands\n");

an instrunent's state\n");

/'l Resets the signal generator
/1 Sets sig gen frequency

/1 Turns ALC O f

/'l Sets power for -3.2 dBm

/1 Turns RF output On

/'l Checks for operation conplete

/1 Waits for setup to conplete

/1l Saves sig gen state to register #1

/1 Print user information

printf("to Register #1. Observe the state then press Enter\n");

printf("\n");
getch();
| ngDone=0;
viPrintf(vi, "*RST\n");
viPrintf(vi, "*OPC?\n");
whil e (!l ngDone)
vi Scanf (vi ,"%l", & ngDone);

/1 Prints new line character

/1 Wit for user input

/1l Resets the operation conplete flag

/'l Resets the signal generator

/'l Checks for operation conplete

/1 Waits for setup to conplete

/1 Print user infromation

56

Chapter 2

Programming Examples
GPIB Programming Examples

printf("The instrunent is nowin it's Reset operating state. Press the\n");

printf("Enter key to return the signal generator to the Register #1

state\n");

printf("\n"); /1 Prints new line character
getch(); /1 Waits for user input
| ngDone=0; /'l Reset the operation conplete flag
viPrintf(vi, "*RCL 1\n"); /'l Recalls stored register #1 state
viPrintf(vi, "*OPC?\n"); /'l Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"%l", & ngDone) ; /1 Waits for setup to conplete

/1 Print user information

printf("The signal generator has been returned to it's Register #1
state\n");

printf("Press Enter to continue\n");

printf("\n"); /1l Prints new |line character
getch(); /1 Waits for user input

| ngDone=0; /! Reset the operation conplete flag
viPrintf(vi, "*RST\n"); /1l Resets the signal generator
viPrintf(vi, "*OPC?\n"); /'l Checks for operation conplete

while (!l ngDone)
vi Scanf (vi ,"%l", & ngDone); /1 Waits for setup to conplete
/1 Print user information
printf("Press Local on instrument front panel to return to manual node\n");
printf("\n"); /1l Prints new |line character
/1 C ose the sessions
vi Cl ose(vi);
vi Cl ose(defaul tRM ;
}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register isread. You will be asked to set up
the signal generator for error generating conditions. The data questionable status register will be read and the
program will notify the user of the error condition that the setup caused. Follow the user prompts presented
when the program runs. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following

Chapter 2 57

Programming Examples
GPIB Programming Examples

code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex9.cpp.

[Rk R Rk Rk kR kR kR kR kR Rk Rk Rk kR kR kR kR kR kR kR Rk kR kR Rk Rk Rk Rk Rk Rk
/1 PROGRAM NAME: vi saex9. cpp

/1

/1 PROGRAM DESCRI PTION: I n this exanple, the data questionable status register is read

/1 The data questionable status register is enabled to read an unl evel ed condition

/1 The signal generator is then set up for an unleveled condition and the data

/1 questionable status register read. The results are then displayed to the user

/1 The status questionable register is then setup to nonitor a nodul ation error condition
/1 The signal generator is set up for a nodulation error condition and the data

/1 questionable status register is read

/1 The results are displayed to the active w ndow.

/1

//***

#i ncl ude <vi sa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanp

#i ncl ude <coni o. h>

void main ()

{

Vi Session defaultRM vi;// Declares a variables of type Vi Session
// for instrument communication

Vi Status vi Status = 0;// Declares a variable of type Vi Status

/1 for GPIB verifications

int num=0;// Declares a variable for switch statenents

char rdBuffer[256] ={0}; /'l Declare a variable for response data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session

58 Chapter 2

Programming Examples
GPIB Programming Examples

/1 Open session to GPIB device at address 19

vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI _NULL, WVI_NULL, &vi);
if(viStatus){ /1 1f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viC ear(vi);// Cdears the signal generator

/1 Prints user information

ntf("Programi ng exanple to denonstrate reading the signal generator's
Status Byte\n");

pr

printf("\n");
pr
pr
pr
pr
pr
pr
pr
pr
getch(); /1 Waits for keyboard user input

ntf("Manually set up the sig gen for an unlevel ed output condition:\n");

ntf("* Set signal generator output anplitude to +20 dBm n");

ntf("* Set frequency to nmaxi mum val ue\n");

ntf("* Turn On signal generator's RF Qutput\n");

ntf("* Check signal generator's display for the UNLEVEL annuni ator\n");

ntf("\n");

ntf("Press Enter when ready\n");
ntf("\n");

viPrintf(vi, "STAT: QJES: PON ENAB 2\ n"); /'l Enabl es the Data Questionabl e
/1 Power Condition Register Bits

/l Bits '0'" and '1'

viPrintf(vi, "STAT: QJES: PON COND?\ n"); /1 Querys the register for any
Il set bits

vi Scanf (vi, "%", rdBuffer); /! Reads the deci mal sum of the
/'l set bits

nunm=(int (rdBuffer[1]) -('0")); /'l Converts string data to

/1l nuneric

Chapter 2 59

Programming Examples
GPIB Programming Examples

switch (num /1 Based on the decinal value

{

case 1:

printf("Signal Generator Reverse Power Protection

Tripped\n");
printf("/n");
br eak;
case 2:

printf("Signal Generator Power is Unleveled\n");
printf("\n");
br eak;
defaul t:
printf("No Power Unleveled condition detected\n");
printf("\n");
}
vi C ear(vi); /1 Clears the signal generator

/1 Prints user information

=}

—

-
—~

pri
pr
pr
pr
pr
pr
pr
pr
pr
pr
pr
pr

ntf("\n");

ntf("Manually set up the sig gen for an unlevel ed output condition:\n");

ntf("\n");

ntf("* Select AM nodul ation\n");

ntf("* Select AM Source Ext 1 and Ext Coupling AC\n");

ntf("* Turn On the nmodul ation.\n");

ntf("* Do not connect any source to the input\n");

ntf("* Check signal generator's display for the EXT1 LO annunciator\n");

ntf("\n");

ntf("Press Enter when ready\n");

ntf("\n");
getch(); /1 Waits for keyboard user input
viPrintf(vi, "STAT: QUES: MOD: ENAB 16\ n"); // Enables the Data Questionable

60

Chapter 2

/1l bits '0","1
viPrintf(vi,
Il set bits
vi Scanf (vi, "%", rdBuffer);
/'l set bits

" STAT: QUES: MOD: COND?\ n") ;

nunme(int (rdBuffer[1]) -

switch (num
{
case 1:

printf("Signal

printf("\n");
br eak;
case 2:

printf("Signal

printf("\n");
br eak;
case 4.

printf("Signal

printf("\n");
br eak;
case 8:

printf("Signal

printf("\n");
br eak;
case 16:

printf("Signal
printf("\n");
br eak;

defaul t:

printf("No Problens with

Cener at or

Cener at or

Cener at or

Cener at or

Cener at or

Programming Examples
GPIB Programming Examples

/1 Modul ation Condition Register

,'2','3 and '4

/1l Reads the decinal

/1l Querys the register for any

sum of the

("0")); I/l Converts string data to nuneric

/1 Based on the decimal

Modul ation 1 Under nod\n");

Modul ation 1 Overnod\n");

Modul ati on 2 Under nod\ n");

Modul ation 2 Overnmod\n");

Modul ati on Uncal i brated\n");

Modul ation\n");

val ue

Chapter 2

61

Programming Examples
GPIB Programming Examples

printf("\n");

}

/1 C ose the sessions
vi Cl ose(vi);

vi Cl ose(defaul tRVM ;

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the computer can
attend to other tasks while the signal generator is busy performing afunction or operation. When the signal
generator finishesit’s operation, or detects afailure, then a Service Request can be generated. The computer
will respond to the SRQ and, depending on the code, can perform some other operation or notify the user of
failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation isin progress,
prints out a series of asterisks. When the step sweep operation is complete, an SRQ is generated and the
printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the ESG Documentation CD-ROM as visaex10.cpp.

] RR AR Rk Rk kR kR Kk Kk Rk Rk kR kR R kR kR kR kR Rk kR kR Rk Rk Rk Rk Rk Rk

/1

/1 PROGRAM FI LE NAME: vi saex10. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of a Service Request (SRQ

/1 interrupt. The program sets up conditions to enable the SRQ and then sets the signal
Il generator for a step npde sweep. The programw ll enter a printing | oop which prints
/1 an * character and ends when the sweep has conpl eted and an SRQ recei ved.

/1

INEEEE AR R R R R R RS EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEREEEEEEEE]

62 Chapter 2

Programming Examples
GPIB Programming Examples

#i ncl ude "visa. h"

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude "wi ndows. h"

#i ncl ude <coni o. h>

#define MAX_CNT 1024

int sweep=1; // End of sweeep flag

/* Prototypes */

Vi Status _VI_FUNCH interupt (Vi Session vi, ViEventType event Type, Vi Event event,
addr) ;

int main ()

{

Vi Session defaultRM vi;// Declares variables of type Vi Session

/1 for instrunent communication

Vi Status vi Status = 0;// Declares a variable of type ViStatus
/1 for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of menory data

vi St at us=vi OpenDef aul t RM &defaul tRM;// Initialize VISA session
if(viStatus < VI_SUCCESS){// If problens, then pronpt user
printf("ERROR initializing VISA... exiting\n");
printf("\n");
return -1;}

/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 If problems then pronpt user

printf("ERROR Could not open conmunication with
instrument\n")

Vi Addr

Chapter 2

63

Programming Examples
GPIB Programming Examples

printf("\n");

return -1;}

vi C ear(vi); /1 Clears the signal generator
viPrintf(vi, "*RST\n"); /'l Resets signal generator

/1 Print program header and information

printf("** End of Sweep Service Request **\n");
printf("\n");
printf("The signal generator will be set up for a step sweep node
operation.\n");
printf("An '*" will be printed while the instrument is sweeping. The end of
\n");
printf("sweep will be indicated by an SRQ on the GPIB and the programwill
end.\n");
printf("\n");
printf("Press Enter to continue\n");
printf("\n");
getch();
viPrintf(vi, "*CLS\n");// Cears signal generator status byte

viPrintf(vi, "STAT: OPER NTR 8\n");// Sets the Operation Status Goup // Negative
Transition Filter to indicate a // negative transition in Bit 3 (Sweeping)

/1 which will set a corresponding event in // the Operation Event Register. This occurs
/1 at the end of a sweep.

viPrintf(vi, "STAT: OPER.PTR O\n");// Sets the Operation Status Goup // Positive
Transition Filter so that no

/'l positive transition on Bit 3 affects the // Operation Event Register. The positive //
transition occurs at the start of a sweep.

viPrintf(vi, "STAT: OPER ENAB 8\n");// Enables Operation Status Event Bit 3 // to report
the event to Status Byte // Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Summary Bit 7
/1 The next line of code indicates the // function to call on an event

vi Status = vilnstal |l Handl er (vi, VI_EVENT_SERVI CE_REQ interupt, rdBuffer);
/1 The next line of code enables the // detection of an event

vi Status = vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _HNDLR VI _NULL);

64 Chapter 2

Programming Examples
GPIB Programming Examples

viPrintf(vi, "FREQ MODE LIST\n");// Sets frequency node to |ist

viPrintf(vi, "LIST: TYPE STEP\n");// Sets sweep to step

viPrintf(vi, "LIST: TRRG SOUR IMAn");// Imediately trigger the sweep

viPrintf(vi, "LIST: MODE AUTONn");// Sets node for the list sweep

viPrintf(vi, "FREQ STAR 40 MHz\n"); // Start frequency set to 40 Mz

viPrintf(vi, "FREQ STOP 900 MHZ\n");// Stop frequency set to 900 Mz

viPrintf(vi, "SWE:PON 25\n");// Set nunber of points for the step sweep

viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point
viPrintf(vi, "INIT: CONT OFF\n");// Set up for single sweep
viPrintf(vi, "TRIG SOUR IMANn");// Triggers the sweep

viPrintf(vi, "INT\n"); [/ Takes a single sweep

printf("\n");

/1 While the instrument is sweeping have the
/1 programbusy with printing to the display.
/1 The Sleep function, defined in the header
/1 file windows.h, will pause the program

/'l operation for .5 seconds

whil e (sweep==1){

printf("*");

Sl eep(500); }

printf("\n");

/1 The following lines of code will stop the

/'l events and cl ose down the session

vi Status = vi Di sabl eEvent (vi, VI _ALL_ENABLED EVENTS, VI _ALL_MECH);

vi Status = vi Uni nstal |l Handl er (vi, VI_EVENT_SERVI CE_REQ, interupt,
rdBuffer);

vi Status = vi d ose(vi);
vi Status = vi C ose(defaul tRM;

return O;

Chapter 2

65

Programming Examples
GPIB Programming Examples

/1 The following function is called when an SRQ event occurs. Code specific to your

/1 requirements would be entered in the body of the function.

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType event Type, Vi Event event, Vi Addr
addr)

{
Vi St atus status;

Viulnt16 stb;

status = vi ReadSTB(vi, &stb);// Reads the Status Byte
sweep=0;// Sets the flag to stop the '*' printing
printf("\n");// Print user information

printf("An SRQ indicating end of sweep has occurred\n");
vi Cl ose(event);// Cl oses the event

return VI _SUCCESS;

}

66 Chapter 2

Programming Examples
LAN Programming Examples

LAN Programming Examples

e “VXI-11 Programming Using SICL and C” on page 67

e “VXI-11 Programming Using VISA and C” on page 70

e “Setting Parameters and Sending Queries Using Sockets and C” on page 75
» “Setting the Power Level and Sending Queries Using PERL” on page 101

* “Generating aCW Signal Using Java’ on page 103

The LAN programming examplesin this section demonstrate the use of VV X1-11 and Sockets LAN to control
the signal generator. For details on using FTP and TELNET refer to “Using FTP’ on page 23 and “Using
TELNET LAN” on page 20 of this guide.

Before Using the Examples

To use these programming examples you must change references to the | P address and hostname to match
the IP address and hostname of your signal generator.

VXI-11 Programing

The signal generator supports the VX1-11 standard for instrument communication over the LAN interface.
Agilent 10 Libraries support the VXI-11 standard and must be installed on your computer before using the
V XI-11 protocol. Refer to “Using VXI-11" on page 18 of this Programming Guide for information on
configuring and using the VX1-11 protocoal.

The V X1-11 examples use TCPIPO as the board address.

VXI-11 Programming Using SICL and C

The following program uses the VX1-11 protocol and SICL to control the signal generator. The signal
generator is set to a1l GHz CW frequency and then queried for its ID string. Before running this code, you
must set up the interface using the Agilent 10 Libraries |O Config utility.

The following program example is available on the ESG Documentation CD-ROM as vxisicl.cpp.

[Rk kR kR kR Rk Rk kR Rk kR kR kR Rk kR Rk Rk Rk kR kR Rk ko Rk Rk Rk Rk Rk Rk Rk Rk ok
I

/1 PROGRAM NAME: vxi si cl . cpp

I

/1 PROGRAM DESCRI PTI ON: Sanpl e test programusing SICL and the VXI-11 protocol

Chapter 2 67

Programming Examples
LAN Programming Examples

/1
/1 NOTE: You nust have the Agilent 10 Libraries installed to run this program
/1

/1 This exanple uses the VXl -11 protocol to set the signal generator for a 1 gHz CW
/1 frequency. The signal generator is queried for operation conplete and then queried

/1l for its ID string. The frequency and ID string are then printed to the display

/1

/1 | MPORTANT: Enter in your signal generators hostnane in the instrunentNane decl aration
/1 where the "xxxxx" appears

/1

//**

#i ncl ude "stdaf x. h"
#i ncl ude <sicl.h>
#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

int main(int argc, char* argv[])

{

I NST id; /| Device session id

i nt opcResponse; /1 Variable for response flag
char instrunentName[] = "xxxxx"; [/ Put your instrunment's hostnanme here

char instNaneBuf[256];// Variable to hold instrument name
char buf[256];// Variable for id string
ionerror(l_ERROR EXIT);// Register SICL error handler

/1 Open SICL instrument handl e using VXI-11 protoco

sprintf(instNaneBuf, "lan[%]:inst0", instrunmentNane)

id = iopen(instNaneBuf);// Open instrunent session

68 Chapter 2

Programming Examples
LAN Programming Examples

itimeout(id, 1000);// Set 1 second tineout for operations
printf("Setting frequency to 1 Ghz...\n");
iprintf(id, "freq 1 GHz\n");// Set frequency to 1 Gz

printf("Waiting for source to settle...\n");
iprintf(id, "*opc?\n");// Query for operation conplete

iscanf(id, "9%", &opcResponse); // Operation conplete flag

if (opcResponse != 1)// |f operation fails, pronpt user
{

printf("Bad response to 'OPC?'\n");

iclose(id);

exit(l);

}

iprintf(id, "FREQXAn");// Query the frequency

iscanf(id, "%", &buf);// Read the signal generator frequency
printf("\n");// Print the frequency to the display
printf("Frequency of signal generator is %\n", buf);
ipromptf(id, "*IDN?\n", "9%", buf);// Query for id string
printf("Instrument ID: %\n", buf);// Print id string to display

iclose(id);// Close the session

return O;

}

Chapter 2 69

Programming Examples
LAN Programming Examples

VXI-11 Programming Using VISA and C

The following program uses the V' X1-11 protocol and the VISA library to control the signal generator. The
signal generator isset to al GHz CW frequency and queried for its 1D string. Before running this code, you
must set up the interface using the Agilent 10 Libraries |O Config utility.

The following program example is available on the ESG Documentation CD-ROM as vxivisa.cpp.

] R KKKk kR Kk ok kK Kk ok kK Kk ok kK Kk ok o kK R ok ok o kR K ok ok o kR ok ok kR R ok ok R Rk ok R R R ok ok R R R ok R kR Rk kK

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

PROGRAM FI LE NAME: vXi vi sa. cpp

Sanpl e test programusing the VISA libraries and the VXI-11 protoco

NOTE: You nust have the Agilent Libraries installed on your conputer to run

this program

PROGRAM DESCRI PTI ON: Thi s exanpl e uses the VXI-11 protocol and VISA to query
the signal generator for its ID string. The ID string is then printed to the
screen. Next the signal generator is set for a -5 dBm power |evel and then

queried for the power level. The power level is printed to the screen

| MPORTANT: Set up the LAN Client using the 1O Config utility

] R KK Kk kR Kk ok kK Kk ok ok kK Kk ok o kK K ok ok o kR R ok ok kR R ok ok kR R ok ok kR R ok ok R R ok ok R R R ok R R R Rk R kK Rk kK

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>

#i ncl ude " St dAf x. h"

#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

#def i ne MAX_COUNT 200

int main (void)

70

Chapter 2

Programming Examples
LAN Programming Examples

Vi Status status;// Declares a type Vi Status variable

Vi Session defaultRM instr;// Declares a type Vi Session variable
ViU nt32 retCount;// Return count for string I/0O

Vi Char buffer[MAX_COUNT];// Buffer for string I/O

status = vi OpenDef aul t RM &def aul t RV ; /1 Initialize the system
/1 Open conmuni cation with Seri al
/1 Port 2

status = vi Qpen(defaul tRM "TPCIPO::19::INSTR', VI _NULL, VI_NULL, & nstr);

if(status){ /1 |f problems then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds

vi Set Attribute(instr, VI_ATTR TMO VALUE, 5000);

/1 Ask for sig gen ID string

status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/!l Read the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0'"; /'l Indicate the end of the string
printf("Signal Generator ID="); /1 Print header for ID
printf(buffer); /1 Print the ID string
printf("\n"); /1 Print carriage return

/1 Flush the read buffer

/1 Set sig gen power to -5dbm
status = viWite(instr, (ViBuf)"PONAMPL -5dbm n", 15, &retCount);

/'l Query the power |evel
status = viWite(instr, (ViBuf)"POAN\n",5, & et Count);

Chapter 2 71

Programming Examples
LAN Programming Examples

/1 Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0'"; /'l Indicate the end of the string
printf("Power level ="); /1 Print header to the screen
printf(buffer); /1 Print the queried power |evel
printf("\n");

status = vi C ose(instr); /1 C ose down the system

status = vi Cl ose(defaul tRM;

return O;

}

Sockets LAN Programming using C

The program listing shown in “ Setting Parameters and Sending Queries Using Sockets and C” on page 75
consists of two files; lanio.c and getopt.c. Thelanio.c file hastwo main functions; i nt nmai n() andani nt
mai n1().

Thei nt mai n() function allows communication with the signal generator interactively from the command
line. The program reads the signal generator's hostname from the command line, followed by the SCPI
command. It then opens a socket to the signal generator, using port 5025, and sends the command. If the
command appears to be a query, the program queries the signal generator for aresponse, and prints the
response.

Theint mainl(), after renaming to int main(), will output a sequence of commands to the signal generator.
You can use the format as atemplate and then add your own code.

This program is available on the ESG Documentation CD-ROM aslanio.c

Sockets on UNIX

In UNIX, LAN communication viasocketsis very similar to reading or writing afile. The only differenceis
the openSocket() routine, which uses afew network library routines to create the TCP/IP network
connection. Once this connection is created, the standard fread() and fwrite() routines are used for network
communication. The following steps outline the process:

1. Copy thelanio.c and getopt.c files to your home UNIX directory. For example, / users/ nmydir/.
2. Atthe UNIX prompt in your homedirectory type:cc -Aa -O -0 lanio lanio.c

3. Atthe UNIX prompt in your homedirectory type: . / | ani 0 xxxxx “* 1 DN?” where xxxxx isthe
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

72 Chapter 2

Programming Examples
LAN Programming Examples

Thei nt mai n1() function will output a sequence of commandsin a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Renamethelanio.c i nt mai n1() toint mai n() andtheorigina i nt mai n() toi nt mai n1() .

2. Inthemai n(), openSocket () function, change the “your hostname here” string to the hostname of
the signal generator you want to control.

3. Resavethelanio.c program

4. Atthe UNIX prompttype:cc -Aa -O -0 lanio lanio.c

5. Atthe UNIX prompt type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX display

will show adisplay similar to the following:

uni X nmachi ne: /users/nydir
$./lanio
ID Agilent Technol ogi es, E4438C, US70000001, C. 02.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on
sockets. The following steps outline the process for running the interactive program in the Microsoft Visual
C++ 6.0 environment:

1. Renamethelanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of the
Visual C++ project.

NOTE Theint main() functionin the lanio.cpp file will allow commands to be sent to the signal
generator in aline-by-line format; the user typesin SCPI commands. The int main1(0)
function can be used to output a sequence of commandsin a“program format.” See
Programming Using main1() Function. below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with a
prompt “Press any key to continue.” This indicates that the program has compiled and can be used to
send commands to the signal generator.

3. Click start, click Programs, then click Command Prompt. The command prompt window will appear.

4. At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug folder.

Chapter 2 73

Programming Examples
LAN Programming Examples

6.

For example C:\Socketl O\L anio\Debug.

After you cd to the directory where the lanio.exe file is located, type in the following command at the
command prompt: | ani 0 xxxxx “*| DN?” . For example:

C \ Socket | O Lani o\ Debug>l ani o xxxxx “*| DN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in aline by line
format from the command prompt.

Typeexi t at the command prompt to quit the program.

Programming Using main1() Function.

Thei nt mai n1() function will output a sequence of commandsin a program format. If you want to run a
program using a sequence of commands then perform the following:

1

3.

Enter the hostname of your signal generator in the openSocket function of the mai n1() function of the
lanio.cpp program.

Renamethelanio.cpp i nt nai n1() functiontoi nt mai n() andtheorigina i nt mai n() function
toint mainl().

Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-1.

Figure 2-1 Program Output Screen

‘s "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E8254A, US00000001, €.01.00

[Frequency: +2.5000000000000E+08
[Power Level: -5.00000000E+000

[Press any key to continue_

cedlda

74

Chapter 2

Setting Parameters and Sending Queries Using Sockets and C

Programming Examples
LAN Programming Examples

The following programming examples are available on the ESG Documentation CD-ROM as lanio.c and
getopt.c.

AR R R R R SRR R RS EEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEE]

*

*

$Header: |anio.c 04/24/01
$Revision: 1.1 $

$Dat e: 10/24/01

PROGRAM NAME: lanio.c

$Descri ption: Functions to talk to an Agilent signal

gener at or

via TCP/IP. Uses command-line argunents.

A TCP/I P connection to port 5025 is established and

the resultant file descriptor

instrument using regular

Exanpl es:

Query the signal generator frequency:

lani 0 xx. Xxx. xx.x ' FREQ?'

Query the signal generator power |evel:

lani 0 XX. XXx.xx.x ' POAP'

Check for errors (gets one error):

lani 0 XX.Xxx.xx.x 'syst:err?

Send a list of comands froma file, and nunber them

cat scpi_cnds | lanio -n XX.XXX.XX. X

is used to "talk" to the

I/ O nechani sms. $

Chapter 2

75

Programming Examples
LAN Programming Examples

khkkkhkkhkkhkkhkhkhkhkhkhhhkhkhkrhkhkhkhkhkhkkkkk*k

*

* This program conpiles and runs under

* - HP-UX 10.20 (UNI X), using HP cc or gcc:

* + cc -Aa -O-o0lanio lanio.c

* + gcc -Wall -O -0 lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

* - Wndows NT 3.51, using Mcrosoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Conpile both lanio.c and getopt.c

* + Consider re-naming the files to lanio.cpp and getopt.cpp

* Consi derations:

* - On UNI X systens, file I/O can be used on network sockets.

* Thi s makes progranm ng very conveni ent, since routines |ike

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the |lower |level read() and wite() calls.

*

* - In the Wndows environnent, file operations such as read(), wite(),
* and cl ose() cannot be assunmed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

***/

/* Support both Wn32 and HP-UX UNI X environment */

#i fdef _WN32 /* Visual C++ 6.0 will define this */
define W NSOCK
#endi f

#i f ndef W NSOCK
ifndef _HPUX_SOURCE

76

Chapter 2

Programming Examples
LAN Programming Examples

define _HPUX_SOURCE

endif

#endi f

#i ncl ude <stdio. h> /* for fprintf and NULL */
#i ncl ude <string. h> /* for mencpy and nmenset */
#i ncl ude <stdlib. h> /* for malloc(), atol() */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK

#i ncl ude <wi ndows. h>

ifndef _W NSOCKAPI _

include <w nsock. h> /'l BSD-style socket functions

endif

#el se /* UNIX with BSD sockets */
include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */
include <netdb. h> /* for gethostbynane */

define SOCKET_ERRCR (-1)
define | NVALI D_SOCKET (-1)

typedef int SOCKET;

#endi f /* WNSOCK */

#i f def W NSOCK

/* Declared in getopt.c. See exanple progranms disk. */

Chapter 2 77

Programming Examples
LAN Programming Examples

extern char *optarg;

extern int optind;

extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd. h> /* for getopt(3C) */
#endi f

#def i ne COWAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025
#define | NPUT_BUF_SI ZE (64*1024)

/**

* Di splay usage

LR R EREEEEEEEEEEEREREEEY]

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<conmand>]\n", basenane);
fprintf(stderr," % [-nqu] <hostnane> < stdin\n", basenane);
fprintf(stderr," -n, nunber output lines\n");
fprintf(stderr," -q, quiet; do NOT echo lines\n");
fprintf(stderr," -e, show nessages in error queue when done\n");

}

#i f def W NSOCK
int init_w nsock(void)

{

78

Chapter 2

Programming Examples
LAN Programming Examples

WORD wVer si onRequest ed;
WSADATA wsaDat a;
int err;

wVer si onRequest ed = MAKEWORD(1, 1);

wVer si onRequest ed = MAKEWORD(2, 0);

err = WBASt art up(w\Wer si onRequest ed, &wsaDat a) ;

if (err 1= 0) {
/* Tell the user that we couldn't find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");
return -1;

}

return O;

int close_w nsock(void)

WBAC eanup() ;
return O;

}
#endi f /* WNSOCK */

[R R K Kk Kk K K ok kK Kk K ok kK K K K kK Kk ok o kR Kk ok kR R kR o kR R ok ok kK R kR kR Rk R R R Rk kK
*

> $Function: openSocket $

*

* $Description: open a TCP/IP socket connection to the instrument $

*

Chapter 2 79

Programming Examples
LAN Programming Examples

*

*

*

$Parameters: $

(const char *) hostname Network name of instrument.

This can be in dotted deci mal notation.

(int) portNunber The TCP/IP port to talk to.
Use 5025 for the SCPI port.
$Ret urn: (int) Afile descriptor sinmlar to open(l).$

$Errors: returns -1 if anything goes wong $

***/

SOCKET openSocket (const char *hostname, int portNunber)

{

struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;

SOCKET s;

menset (&peeraddr _in, 0, sizeof(struct sockaddr_in));

AR R R EEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEY

/* map the desired host nane to internal form */
[R kR kR kK kR kK kR R Rk R Rk R Rk R Rk R Rk R Rk R Rk Rk K Ak
host Ptr = get host bynane(host nane) ;

if (hostPtr == NULL)

{

fprintf(stderr,"unable to resolve hostname '%'\n",

return | NVALI D_SOCKET;

[RRKR KKKk Kk Kk k ok kK kK kK [

/* create a socket */

host nane) ;

80

Chapter 2

Programming Examples
LAN Programming Examples

/*******************/

s = socket (AF_I NET, SOCK_STREAM 0);

if (s == | NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to "%': %\n",
host name, strerror(errno));
return | NVALI D_SOCKET;
}

mencpy(&peeraddr _i n. si n_addr.s_addr, hostPtr->h_addr, hostPtr->h_Il ength);
peeraddr_in.sin_fam ly = AF_I NET;

peeraddr _in.sin_port = htons((unsigned short) portNunber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,

si zeof (struct sockaddr_in)) == SOCKET_ERROR)

{
fprintf(stderr,"unable to create socket to '%': ¥%\n",
host name, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

AR R EE AR R RS EREEEEEEEEEEEEEREREEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEE]

*

> $Function: commandl nstrunent $

* $Description: send a SCPlI command to the instrument.$

Chapter 2 81

Programming Examples
LAN Programming Examples

*

*

*

$Parameters: $

(FILE*) file pointer associated with TCP/IP socket.
(const char *conmand) . . SCPI conmand string.

$Return: (char *) a pointer to the result string.

$Errors: returns O if send fails $

***/

int commandl nstrunment (SOCKET sock,

const char *command)

int count;

/* fprintf(stderr, "Sending \"%\".\n", command); */

if (strchr(command, '\n') == NULL) {

fprintf(stderr, "Warning: missing newline on command %.\n", conmand);

count = send(sock, conmmand, strlen(command), 0);
if (count == SOCKET_ERROR) ({
return COVMAND_ ERROR;

return NO_CVD_ERROR;

/**

* recv_line(): simlar to fgets(), but uses recv()

LR R EREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEELY]

char * recv_|line(SOCKET sock, char * result, int maxLength)

{

82

Chapter 2

Programming Examples
LAN Programming Examples

#i f def W NSOCK
int cur_length = 0;
int count;
char * ptr = result;

int err = 1;

while (cur_length < naxLength) {
/* Get a byte into ptr */

count = recv(sock, ptr, 1, 0);

/* If no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

/* If we hit a newine, stop. */
if (*ptr == "'"\n") {

ptr++;

err = 0;

br eak;

}

ptr++;

*ptr = '\0";

if (err) {
return NULL;
} else {

return result;

Chapter 2 83

Programming Examples
LAN Programming Examples

#el se
/***
* Sinmpler UNI X version, using file I/O recv() version works too.
* This denpnstrates how to use file I/0O on sockets, in UN X
***/
FILE * instFile;
instFile = fdopen(sock, "r+");

if (instFile == NULL)

{
fprintf(stderr, "Unable to create FILE * structure : %\n",
strerror(errno));
exit(2);
}
return fgets(result, maxLength, instFile);
#endi f

}

[R R K Kk kR K K ok kK Kk ok kK Kk ok kK Rk ok kK Kk ok kR R ok ok kR ok ok ok kK R ok R kR Rk R kR Rk kK

*

> $Function: querylnstrunment$

*

* $Description: send a SCPl conmmand to the instrument, return a response. $

*

* $Paraneters: $

* (FILE*) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPlI command string.

* (char *result) where to put the result.

* (size_t) maxLength maxinum size of result array in bytes.

*

84

Chapter 2

Programming Examples
LAN Programming Examples

* $Return: (long) The nunmber of bytes in result buffer.

* $Errors: returns 0 if anything goes wong. $

*

***/

I ong queryl nstrunment (SOCKET sock,

const char *command, char *result, size_t maxLength)

I ong ch;

char tnp_buf[8];

long resultBytes = O;
int command_err;

int count;

[R K Kk kK ok ok kR Kk Kk kR R Rk Kk kR R Rk Kk kR R Rk ok ok ok ok R Rk ok ok ok ok Rk kK ok ok kK

* Send command to signal generator

***/

conmand_err = conmmandl nstrunent (sock, conmand);

if (command_err) return COVMAND ERROR;

/***

* Read response from signal generator
**/
count = recv(sock, tnmp_buf, 1, 0); /* read 1 char */

ch = tnmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch =="\n"))

{
result = '\0"; / null termnate result for ascii */
return O;

}

Chapter 2 85

Programming Examples
LAN Programming Examples

/* use a do-while so we can break out */
do
{
if (ch =="#")
{
/* binary data encountered - figure out what it is */
long nunDigits;
Il ong nunBytes = 0;
/* char length[10]; */

count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];

if ((count < 1) || (ch == EOF)) break; /* End of file */

if (ch<'0 || ch>"9") break; /* unexpected char */

nunmDigits = ch - '0';

if (nunDigits)

{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunDigits, 0);
result[count] =0; /* null term nate */
nunBytes = atol (result);

}

if (nunBytes)
{
resultBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seens to return up to 1457 bytes, on HP-UX 9.05 */
do {

86 Chapter 2

Programming Examples
LAN Programming Examples

int rcount;

rcount = recv(sock, result, (int)numBytes, 0);
resul t Bytes += rcount;

resul t += rcount; /* Advance pointer */

} while (resultBytes < nunBytes);

/**

* For LAN dunps, there is always an extra trailing newine
* Since there is no EO line. For ASCI| dunps this is
* great but for binary dunps, it is not needed.

***/

if (resultBytes == nunBytes)

{
char junk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dunp til we can an extra line feed */
do
{
if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 & *result == "\n') break;
resul tBytes += strlen(result);
result += strlen(result);
} while (1);
}
}
el se
{

/* ASCI| response (not a binary block) */

Chapter 2 87

Programming Examples
LAN Programming Examples

*result = (char)ch;

if (recv_line(sock, result+1, naxLength-1) == NULL) return O;

/* REMOVE trailing newline, if present. And ternminate string. */

resultBytes = strlen(result);

if (result[resultBytes-1] == '\n') resultBytes -= 1,
result[resultBytes] = '"\0";
}
} while (0);

return resul t Bytes;

/***
*

> $Function: showErrors$

*

* $Description: Query the SCPl error queue, until enpty. Print results. $

*

* $Return: (void)

*
***/
voi d showEr r or s(SOCKET sock)

{
const char * command = " SYST: ERR?\ n";

char result_str[256];

do {

queryl nstrunent (sock, command, result_str, sizeof(result_str)-1);

88 Chapter 2

Programming Examples
LAN Programming Examples

/**
* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0,"No error"

* Don't bother decoding.

**/
if (strncnp(result_str, "+0,", 3) == 0) {

/* Matched +0,"No error" */

br eak;

}

puts(result_str);

} while (1);

[R R K Kk kR K K ok ok kK Kk ok kK Kk ke kK R ok ok kK Rk ok kK R ok ok kR R ok ok kR ok Rk R Rk R kR Rk kK
*

> $Function: isQuery$

*

* $Description: Test current SCPl conmmand to see if it a query. $

* $Return: (unsigned char) . . . non-zero if command is a query. O if not.

***/

unsi gned char isQuery(char* cnmd)
{

unsi gned char g = 0 ;

char *query ;

/***/

Chapter 2 89

Programming Examples
LAN Programming Examples

/* if the command has a '?' in it, use querylnstrument. */
/* otherw se, sinmply send the command. */
/* Actually, we nust be a nore specific so that */

/* marker value querys are treated as commands. */
/* Example: SENS: FREQ CENT (CALCL: MARKL: X?) */

AR R AR RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEREEY]

if ((query = strchr(cnd,'?")) !'= NULL)

{
/* Make sure we don't have a nmarker val ue query, or
* any command with a '?" followed by a ')' character
* This kind of conmand is not a query fromour point of view
* The signal generator does the query internally, and uses the result
*/
query++ ; /* bump past '?" */
whil e (*query)
{
if (*query ==" ') /* attenpt to ignore white spc */
query++
el se break
}
if (*query !'=")")
{
q=1
}
}
return g

[R R K K K Kk K K ok kK K K K o kK K K K kK R R R kK Kk ok kR R ok ok Kk R Rk R Kk K R ok Rk R Rk R kR R Rk R kK

*

> $Function: mai n$

90 Chapter 2

Programming Examples
LAN Programming Examples

* $Description: Read command |ine arguments, and talk to signal generator.

Send query results to stdout. $

* $Return: (int) . . . non-zero if an error occurs

*

***/

int main(int argc, char *argv[])

{

SOCKET i nst Sock;

char *charBuf = (char *) nmalloc(!NPUT_BUF_SI ZE);
char *basenane;

int chr;

char command[1024] ;

char *destination;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

int nunber = 0;

basename = strrchr(argv[0], '/');
if (basename != NULL)

basenane++ ;
el se

basenane = argv[O0];

while ((chr = getopt(argc,argv,"qune")) != ECF)
switch (chr)

{

q:

case 'n': nunber = 1; break ;

case qui et = 1; break;

Chapter 2 91

Programming Examples
LAN Programming Examples

case 'e': show.errs = 1; break
case 'u':
case '?': usage(basenane); exit(1)

/* now | ook for hostnane and optional <conmand>*/
if (optind < argc)
{

destination = argv[optind++]

strcpy(comand, "");

if (optind < argc)

{
while (optind < argc) {
/* <host name> <conmmand> provi ded; only one command string */
strcat (command, argv[optind++])
if (optind < argc) {
strcat (command, " ");
} else {
strcat (command, "\n");
}
}
}
el se
{

/*Only <hostnane> provided; input on <stdin> */

strcpy(comand, "");

if (optind > argc)
{
usage(basenane)

exit(1l)

92 Chapter 2

Programming Examples
LAN Programming Examples

}

}

el se

{
/* no hostname! */
usage(basenane) ;
exit(1l);

}

/**

/* open a socket connection to the instrunent

AR R RS EEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

#i f def W NSOCK
if (init_wnsock() '=0) {
exit(1l);
}
#endi f /* W NSOCK */

i nst Sock = openSocket (destination, SCPI_PORT);

if (instSock == | NVALI D_SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1;

}
/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

/***

/* if the command has a '?" in it, use querylnstrument. */

/* otherw se, sinply send the conmand. */

/***/

Chapter 2 93

Programming Examples
LAN Programming Examples

if (isQery(comrand))

{
| ong buf Bytes;
buf Bytes = queryl nstrunent (i nst Sock, conmand,
charBuf, | NPUT_BUF_SI ZE);
if (lquiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\'n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
conmmand| nstrunent (i nst Sock, command);
}
}
el se
{

/* read a line from<stdin> */

while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))
continue ;
if (*charBuf =="'#" || *charBuf =="'1")
continue ;

strcat (charBuf, "\n");

if (lquiet)
{

94 Chapter 2

Programming Examples
LAN Programming Examples

i f (nunber)
{
char nuni 10];
sprintf(num"%l: ", nunber);
fwite(num strlen(nun), 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout)

fflush(stdout);

}
if (isQuery(charBuf))
{
| ong buf Byt es;
/* Put the query response into the sanme buffer as the*/
/* command string appended after the null terminator.*/
buf Byt es = queryl nstrunent (i nst Sock, char Buf,
charBuf + strlen(charBuf) + 1,
I NPUT_BUF_SI ZE -strlen(charBuf));
if (lquiet)
{
fwite(" ", 2, 1, stdout)
fwite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout)
fflush(stdout);
}
}
el se
{
conmmandl nstrument (i nst Sock, charBuf);
}

Chapter 2

95

Programming Examples
LAN Programming Examples

if (nunber) nunber ++;

if (show_errs) {

showEr r or s(i nst Sock) ;

#i fdef W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();

#el se
cl ose(i nst Sock) ;

#endi f /* WNSOCK */

return O;

/* End of lanio.cpp *

/**/

/* $Function: mainl$ */

/* $Description: Qutput a series of SCPI comrands to the signal generator */

/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */

AR R R R RS EEEEREEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEREEEEEEEEEEEELY

/* Rename this int mainl() function to int nmain(). Re-conpile and the */
/* execute the program */
96 Chapter 2

Programming Examples
LAN Programming Examples

/**/

int mainl()

{

SOCKET i nst Sock;
| ong buf Byt es;
char *charBuf = (char *) nmalloc(!NPUT_BUF_SI ZE) ;

/***/

/* open a socket connection to the instrunent*/

/***/

#i f def W NSOCK
if (init_winsock() !'=0) {
exit(1l);
}
#endi f /* W NSOCK */

i nst Sock = openSocket (" xxxxxx", SCPI_PORT); /* Put your hostnane here */
if (instSock == I NVALI D_SOCKET) {

fprintf(stderr, "Unable to open socket.\n");

return 1;

}

/* fprintf(stderr, "Socket opened.\n"); */

buf Byt es = queryl nstrument (i nst Sock, "*IDN?\n", charBuf, |NPUT_BUF_SI ZE);
printf("I D %\n", charBuf);

conmandl nstrunent (i nst Sock, "FREQ 2.5 GHz\n");

printf("\n");

buf Byt es = queryl nstrument (i nst Sock, "FREQ CWP\n", charBuf, |NPUT_BUF_SI ZE);

Chapter 2 97

Programming Examples
LAN Programming Examples

printf("Frequency: %\n", charBuf);

comrandl nst runent (i nst Sock, "POWNAMPL -5 dBm n");

buf Byt es = queryl nstrument (i nst Sock, "PON AMPL?\n", charBuf, |NPUT_BUF_SI ZE);
printf("Power Level: %\n",charBuf);

printf("\n");

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();

#el se
cl ose(i nst Sock) ;

#endi f /* WNSOCK */

return O;

}

/***

get opt (30) get opt (30)

PROGRAM FI LE NAME: getopt.c

getopt - get option letter from argunment vector

SYNCPSI S
int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;

extern int optind, opterr, optopt;

PRORGAM DESCRI PTI ON:
getopt returns the next option letter in argv (starting fromargv[1])
that matches a letter in optstring. optstring is a string of

recogni zed option letters; if aletter is followed by a colon, the

98 Chapter 2

Programming Examples
LAN Programming Examples

option is expected to have an argument that nmay or nmy not be
separated fromit by white space. optarg is set to point to the start

of the option argunent on return from getopt.

getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before

the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option
argunent), getopt returns EOF. The special option -- can be used to

delimt the end of the options; EOF is returned, and -- is skipped.

***/

#i ncl ude <stdio. h> /* For NULL, EOF */

#i ncl ude <string. h> /* For strchr() */

char *optarg; /* d obal argunent pointer. */

int optind = 0; /* dobal argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

char c;

char *posn;

optarg = NULL;

if (scan == NULL || *scan == '"\0") {
if (optind == 0)

Chapter 2 99

Programming Examples
LAN Programming Examples

opti nd++;

if (optind >= argc || argv[optind][0] !="-" || argv[optind][1l] == "\0")
return(EOF);

if (strenp(argv[optind], "--")==0) {
opti nd++;

return(EOF);

scan = argv[optind] +1;

opti nd++;

C = *scan++;

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[O0], c);

return('?');

}
posn++;
if (*posn == ":") {
if (*scan '="\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
opti nd++;
}
}

100 Chapter 2

Programming Examples
LAN Programming Examples

return(c);

}

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface. The signal
generator frequency is set to 1 Ghz, queried for operation complete and then queried for it'sidentify string.
This example was developed using PERL version 5.6.0 and requires a PERL version with the 10::Socket
library.

1. Inthe code below, enter your signal generator’s hostname in place of the xxxxx in the code line: ny
$i nst rument Name= “xxxxx”; .

2. Savethe code listed below using the filename | anper | .
3. Runthe program by typing per| | anper| atthe UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the ESG Documentation CD-ROM as perl.txt.
#! [usr/ bi n/ perl

PROGRAM NAME: perl .txt

Exanple of talking to the signal generator via SCPl-over-sockets

#

use | O : Socket;

Change to your instrument's hostnane

ny $i nstrunment Nane = "xxxxx";

Cet socket

$sock = new | O : Socket:: I NET (Peer Addr => $i nstrunment Nane,
Peer Port => 5025,
Proto => "tcp',
)i

di e "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Chapter 2 101

Programming Examples
LAN Programming Examples

Wait for conpletion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

ny $response = <$sock>;

chonp $response; # Renmoves new i ne from response
if ($response ne "1")

{

die "Bad response to '*OPC?" frominstrunent!\n";

Send identification query
print $sock "*IDN?\n";
$response = <$sock>;

chonp $response;

print "lInstrument |ID: $response\n";

Sockets LAN Programming Using Java

In this exampl e the Java program connects to the signal generator via sockets LAN. This program requires
Javaversion 1.1 or later be installed on your PC. To run the program perform the following steps:

1. Inthe code example below, type in the hostname or | P address of your signal generator. For example,
String instrunentNane = (your signal generator’s hostnane).

2. Copy the program as Scpi SockTest . j ava and saveit in aconvenient directory on your computer.
For example save thefiletothe C: \ j dk1. 3. 0_2\ bi n\j avac directory.

Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

4. Compilethe program. At the command prompt type: j avac Scpi SockTest . j ava.
The directory path for the Java compiler must be specified. For example:
C.\>j dk1l.3.0_02\bi n\javac Scpi SockTest.|ava

5. Runthe program by typingj ava Scpi SockTest at the command prompt.

6. Typeexit at the command prompt to end the program.

102 Chapter 2

Programming Examples
LAN Programming Examples

Generating a CW Signal Using Java

The following program example is available on the ESG Documentation CD-ROM as javaex.txt.

] R KKKk kK ok ok kK K ok ok kK K ok ok kK K ok ok kR K ok ok sk kR ok ok o kR R ok ok kR kR kR Rk kR R Rk kK

/1 PROGRAM NAME: j avaex.txt
/1 Sanple java programto talk to the signal generator via SCPI-over-sockets

/1 This programrequires Java version 1.1 or |later.
/1 Save this code as Scpi SockTest.java

/1 Conpile by typing: javac Scpi SockTest.]java

/1 Run by typing: java Scpi SockTest

/1 The signal generator is set for 1 GHz and queried for its id string

] R KKKk kR ok ok ok ok kK K ok ok ok kK Kk ok kK K ok ok kK Kk ok kR R ok ok o kR ok ok ok kK R ok ok kR Rk ok kR Rk R kK

inmport java.io.*;
inport java.net.*;
cl ass Scpi SockTest
{

public static void main(String[] args)

{

String instrument Nane = "XXxxx"; /1 Put instrunent hostnanme here
try
{

Socket t = new Socket (i nstrunment Nanme, 5025); // Connect to instrunent
/1l Setup read/wite nechanism
Buf feredWiter out =
new BufferedWiter(
new Qut put StreanWiter(t.getQutputStream()));
Buf f eredReader in =
new Buf f er edReader (
new | nput StreanReader (t.getlnputStrean()));
Systemout.println("Setting frequency to 1 GHz...");
out.wite("freq 1GHz\n"); /] Sets frequency

out.flush();

Chapter 2 103

Programming Examples
LAN Programming Examples

Systemout.println("Waiting for source to settle...");
out.wite("*opc?\n"); /1 Waits for conpletion
out. flush();

String opcResponse = in.readLine();

if (!opcResponse.equal s("1"))
{
Systemerr.printIn("lInvalid response to '*OPC?'I");

Systemexit(1l);

}

Systemout.println("Retrieving instrunent ID...");

out.wite("*idn?\n"); /1 Querys the id string

out.flush();

String i dnResponse = in.readLine(); /!l Reads the id string
/1 Prints the id string

Systemout.printlin("Instrument ID. " + idnResponse);

}

catch (1 OException e)

{

Systemout.printin("Error" + e);

104

Chapter 2

Programming Examples
RS-232 Programming Examples

RS-232 Programming Examples

“Interface Check Using Agilent BASIC” on page 105
“Interface Check Using VISA and C” on page 106

“Queries Using Agilent BASIC” on page 108

“Queries Using VISA and C” on page 109

Before Using the Examples
On the signal generator select the following settings:

» Baud Rate - 9600 must match computer’s baud rate
* RS-232 Echo - Off

Interface Check Using Agilent BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI command * RST
will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this exampleis9. The serial port used is COM1
(Serial A on some computers). Refer to “Using RS-232" on page 25 for more information.

Watch for the signal generator’s Listen annunciator (L) and the ‘ remote preset...." message on the front panel
display. If there is no indication, check that the RS-232 cable is properly connected to the computer serial
port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was typed
incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to “If You Have
Problems” on page 28 for more help.

The following program example is available on the ESG Documentation CD-ROM as rs232ex1.txt.

10 R R R T T T T T ST
20 !

30 I PROGRAM NAME: rs232exl1. txt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the RS-232 connections and
60 ! interface are functional.

70 !

Chapter 2 105

Programming Examples
RS-232 Programming Examples

80 ! Connect the UNI X workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run Agilent BASIC, type in the followi ng conmands and then RUN t he program
120 !

130 !

LAQ D EFEEE Rk Rk ko k ko k ko k ko k ko k ko k ko ko kR kR kR kR kR kR kR kR kR kR kR kR kR Rk
150 !

160 I NTEGER Num

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9, 3; 9600 | Sets the baud rate to match the sig gen

190 STATUS 9, 4; St at ! Reads the value of register 4

200 Num=BI NAND(Stat,7) ! Gets the AND val ue

210 CONTROL 9, 4; Num | Sets parity to NONE
220 QUTPUT 9; " *RST" ! Qutputs reset to the sig gen
230 END I End the program

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. In this example the COM2 port is used. The serial
portisreferred to in the VISA library as‘ASRL1" or ‘ASRL2" depending on the computer serial port you
are using. Launch Microsoft Visual C++, add the required files, and enter the following code into the .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as rs232ex1.cpp.
R R T R T Ty T T T
/1 PROGRAM NAME: rs232exl. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s code exanple uses the RS-232 serial interface to

/1 control the signal generator.

/1

/'l Connect the conmputer to the signal generator using an RS-232 serial cable.

/1 The user is asked to set the signal generator for a 0 dBm power |evel

/1 A reset command *RST is sent to the signal generator via the RS-232

106 Chapter 2

Programming Examples
RS-232 Programming Examples

/1 interface and the power level will reset to the -135 dBm |l evel.The default
// attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.

/1 These attributes can be changed using VI SA functions.

/1

/1 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

] R KKk kK ok ok kK Kk ok ok kK Kk ok kK K ok ok o kK ok ok ok o kR R ok ok kR ok ok o sk kR ok ok R R ok ok R R R ok kR R R ok ok kR Rk kK

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

int baud=9600;// Set baud rate to 9600
printf("Manually set the signal generator power level to O dBmn");
printf("\n");
printf("Press any key to continue\n");
getch();
printf("\n");
Vi Session defaul tRM vi;// Declares a variable of type Vi Session
/1 for instrunent communication on COM 2 port
Vi Status vi Status = 0;
/'l Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI _NULL, WVI_NULL, &vi);

if(viStatus){// If operation fails, pronpt user

Chapter 2 107

Programming Examples
RS-232 Programming Examples

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

/1 initialize device

vi St at us=vi Enabl eEvent (vi, VI _EVENT_| O COVPLETI ON, VI _QUEUE, VI _NULL);

viC ear(vi);// Sends device clear conmand

/1 Set attributes for the session

vi Set Attribute(vi, VI_ATTR ASRL_BAUD, baud) ;
vi Set Attribute(vi,VI_ATTR ASRL_DATA BI TS, 8);

viPrintf(vi, "*RST\n");// Resets the signal generator
printf("The signal generator has been reset\n");
printf("Power |evel should be -135 dBmin");
printf("\n");// Prints new line character to the display
vi Cl ose(vi);// Cl oses session

vi Cl ose(defaultRM;// C oses default session

}
Queries Using Agilent BASIC

This example program demonstrates signal generator query commands over RS-232. Query commands are
of thetype * 1 DN? and are identified by the question mark that follows the mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:
The following program example is available on the ESG Documentation CD-ROM as rs232ex2.txt.

10 R T R L T T Ts TS
20 !

30 I PROGRAM NAME: rs232ex2. t xt

40 !

50 I PROGRAM DESCRI PTION: In this exanple, query comands are used to read

60 ! data fromthe signal generator.

70 !

108 Chapter 2

Programming Examples
RS-232 Programming Examples

80 ! Start Agilent BASIC, type in the follow ng code and then RUN the program

90 !

I R R T R T T T T T TS T
110 !

120 I NTEGER Num

130 DI M Str$[200], Str1$[20]

140 CONTROL 9,0;1 ! Resets the RS-232 interface

150 CONTROL 9, 3; 9600 | Sets the baud rate to match signal generator rate
160 STATUS 9, 4; St at ! Reads the value of register 4

170 Num=BI NAND(St at , 7) I Gets the AND val ue

180 CONTROL 9, 4; Num | Sets the parity to NONE

190 OUTPUT 9; " *| DN?" ! Querys the sig gen ID

200 ENTER 9; Str$! Reads the ID

210 WAIT 2 I Wiits 2 seconds

220 PRINT "ID =",Str$ I Prints IDto the screen

230 QUTPUT 9; "POW AMPL -5 dbn' ! Sets the the power level to -5 dbm

240 QUTPUT 9; " POWP" ! Querys the power level of the sig gen
250 ENTER 9; Str1$! Reads the queried val ue

260 PRI NT "Power = ", Strl$ I Prints the power level to the screen
270 END I End the program

Queries Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional . Launch Microsoft Visual C++, add the required
files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as rs232ex2.cpp.

[R R kR KR kAR KRk AR KRk KRRk KRRk KRRk AR KR kA K K
/1

/1 PROGRAM NAME: rs232ex2. cpp

/1

/1 PROGRAM DESCRI PTI ON: This code exanple uses the RS-232 serial interface to control

/'l the signal generator.

Chapter 2 109

Programming Examples
RS-232 Programming Examples

/1
/1
/1
/1
/1
/1
/1
/1
/1

Connect the conputer to the signal generator using the RS-232 serial cable

and enter the following code into the project .cpp source file.

The program queries the signal generator ID string and sets and queries the power
level. Query results are printed to the screen. The default attributes e.g. 9600 baud
parity, 8 data bits,1 stop bit are used. These attributes can be changed using VI SA

functions

| MPORTANT: Set the signal generator BAUD rate to 9600 for this test

//**

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>

#i ncl ude " St dAf x. h"

#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

#defi ne MAX_COUNT 200

int main (void)

{

Vi Statusstatus; // Declares a type Vi Status variable

Vi Sessi ondefaul tRM instr;// Declares type Vi Session variabl es

ViU nt32retCount; // Return count for string I/O

Vi Char buf fer [MAX_COUNT] ;// Buffer for string I/0O

status = vi OpenDefaul t RM &defaultRM;// Initializes the system

/1 Open communi cation with Serial Port 2

status = vi Open(defaul tRM "ASRL2::INSTR', VI_NULL, VI_NULL, & nstr);

110

Chapter 2

Programming Examples
RS-232 Programming Examples

if(status){// |If problenms, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds
vi SetAttribute(instr, VI_ATTR TMO VALUE, 5000);
/1 Asks for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Reads the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= '\0";// Indicates the end of the string
printf("Signal Generator ID: "); // Prints header for ID
printf(buffer);// Prints the ID string to the screen
printf("\n");// Prints carriage return

/1 Flush the read buffer

/1 Sets sig gen power to -5dbm

status = viWite(instr, (ViBuf)"PONAMPL -5dbm n", 15, &retCount);
/1 Querys the sig gen for power |evel

status = viWite(instr, (ViBuf)"POAN\n",5, & et Count);

/1 Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= '\0";// Indicates the end of the string
printf("Power level = ");// Prints header to the screen
printf(buffer);// Prints the queried power |evel
printf("\n");

status = viC ose(instr);// Cose down the system

status = vi Cl ose(defaul tRM;

return O;

}

Chapter 2 111

Programming Examples
RS-232 Programming Examples

112 Chapter 2

3 Programming the Status Register System

This chapter provides the following major sections:

“Overview” on page 114

“Status Register Bit Values’ on page 117

“Accessing Status Register Information” on page 118
“Status Byte Group” on page 123

“Status Groups’ on page 126

113

Programming the Status Register System
Overview

Overview

During remote operation, you may need to monitor the status of the signal generator for error conditions or
status changes. The signal generator’s error queue can be read with the SCPI query :SY STem:ERRor?
(Refer to “:ERRor[:NEXT]” in the SCPI command reference guide) to see if any errors have occurred. An
alternative method uses the signal generator’s status register system to monitor error conditions and/or
condition changes.

The signal generator’s status register system provides two major advantages:

* You can monitor the settling of the signal generator using the settling bit of the Standard Operation
Status Group’s condition register.

* You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving a
speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registersthat are arranged in a hierarchical order.
The lower-priority status registers propagate their data to the higher-priority registers using summary bits.
The Status Byte Register is at the top of the hierarchy and contains the status information for lower level
registers. The lower level registers monitor specific events or conditions.

The lower level status registers are grouped according to their functionality. For example, the Data Quest.
Frequency Status Group consists of five registers. This chapter may refer to a group as aregister so that the
cumbersome correct description is avoided. For example, the Standard Operation Status Group’s Condition
Register can be referred to as the Standard Operation Status register. Refer to “ Status Groups’ on page 126
for more information.

Figure 3-1 and Figure 3-2 show the signal generator’s status byte register system and hierarchy.

The status register system uses | EEE 488.2 commands (those beginning with *) to access the higher-level
summary registers. Lower-level registers can be accessed using STATus commands.

114 Chapter 3

Programming the Status Register System

Overview
Figure 3-1 The Overall Status Byte Register System (1 of 2)
Data Questionable Power Status Group
R.P.P. Tripped | 0]
Unleveled— 1
1Q Mod Overdrive o 2
Lowband Detector Fault— 3 o o
Unused- 4 2 |5 (5|8 |
Unused < 5 gﬁ E @ o
Unused-{ 6 el el s 33/'\ :
Unusedd 7 slelsz (e \-l_-/ To Data Questionable Status Group #3
Unused—{ 8 = [= = [E 1
. [[~ |—~|2 |
Unused 9 S & @ To Data Questionable Status Group #5
Unused 410 S Io
Unused 411
Hﬂﬂzzg : :]] g To Data Questionable Status Group #7
Unused 414
Always Zero (0) _E To Data Questionable Status Group #8
Data Quest. Frequency Status Group
Synth. Unlocked 4 0 To Data Questionable Status Group #12
10 MHz Ref Unlocked 4 1
1 GHz Ref Unlocked o 2
Baseband 1 Unlocked o 3
Unused o 4 sl | | 9
Sampler Loop Unlocked o 5 '% sle % (14 To, Standard Operation Status Group #10
YO Loop Unlocked -{ 6 SliEl|> 2
Unused o 7 -|2]e|s 23_
Unused - 8 2le| 8] |w
Unused - 9 = RIS
slEld|e
Unused —{10 8 2
Unused 11
Unused g Data Quest. BERT Status Group
823::3] 1 {(Option UN7 & 300 only)
Always Zero (0) {15 No DataNghilr?;le(] (1)
Data Quest. Modulation Status Group PRBS SyBc Losg — g
. nused -
Mod 1 Undermod o 0 -4 ° 5
Mod 1 Overmod - 1 B:ﬂsz ds % ol 5|l o)
Mod 2 Undermod o 2 o2 25|
Mod 2 Overmod 4 3 o o) Bnusej T g R [[;‘,’ %
Modulation Uncalibrated -| 4 Glz|s|8|d nusee] ol 2| 2| 2@_
Unused 4 & = EE Unused - 8 K] el il g
nuse: 13 §,_,_,_,_-c—,,% Unused - 9 = =
Bnusej_ 7 —|2[2]|s g®_ Unused 10 sl <m|e
Uﬂﬂ::d ds ;g g g ‘% EI Downconv./Demod Out of Lock <11 O w
Unused - 9 g =z § Demod DSP Ampl Out of Range —{12
bnused 10 o it Sync. to BCHTCHPDCH 13
] Waiting for TCH/PDCH —{14
Unused <12 Al Z 015
Unused 13 ways Zero (0) 15
Aways oot e Baseband Operation Status Group
L. Baseband 1 Busy —_0
Data Quest. Calibration Status Group Baseband 1 Communicating -{ 1
DCFM/DCfM —— Unused o 2
_ ZeroFailure| 0 Unused 4 3 o o
I/QCalibration Failure o 1 Unused - 4 © |5 |o § &
Unused 9 2 Unused 4 5 gﬁ E @ o
Unused o 3 E,‘_‘_‘_g Unused - 6 u:ww%%
Unused | 4 (5|58 | Unused o 7 S%%L‘:C@_
Unused 4 5 SEEIL|e Unused | 8 = g el v
Unused - 6 o n|8S Unused - 9 HoloklE
Unused o 7 g%%i‘fl_ﬁ@i Unused {10 vau'lli
Unused - 8 =g e el = ot Unused 411
Unused 9 9 2 oo 2 S Unused 12
Unused 10 3 & Unused 413
Unused -{11 Unused 14
Unused — :]Ig Always Zero (0) 415
Unused | -
Unused 14 stat-reg 1of2

Always Zero (0) 415}

Chapter 3 115

Programming the Status Register System

Overview
Figure 3-2 The Overall Status Byte Register System (2 of 2)
Status Byte Register
Unused| o
Unused| 1
From Data Questionable Power Status Group Error/Event Queue Summary Bit| 2
Data Questionable Status Summary Bit] -
From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)] 4
Status Group Std. Event statulsa.-m. Bit| 5 |—
From Data Quest. Modulation Status Group Unused—| g Req. Serv. Sum. Bit (RQS)| & M4
[}
o Unused— { Std. Operation Status Sum. Bit| 7 |+ |
From Data Quest. Calibration Status Group Unused - 2 1
1
(summary)— 3 |
From Data Quest BERT Status Group TEMPerature i
(OVEN COLD) | 4 = o I I K
(summary)— 5 ‘gé E % & :
Unused— & <_LT_ q—?% :
(summary)— 7 HEE + !
From Baseband Operation Status Group — (summary)— & 22 S = |
HaSHE X
SELFtest—| 9 éLuLu Lg_uJ |
Unused — 10 :
Unused=—] 11 :
(summary)— 12 |
Unused— 13 :
Unused— 14 :
Always Zero (0)< 15 l
L |
I
Standard Event Status Group !
Oper. Complete 4 0] |
Req. Bus Control o 1 - Fy :
Query Error o 2 % I
Dev. Dep. Error 4 3 = X
Execution Error o 4 E 2]
Command Error - 5 5 g :
User Request | 6 al @ I
PowerOn— 7 w :
|
Standard Operation Status Group I
— I
112 CALibrating— 0o :
Setiling — 1 |
Unused - 2 :):9
: I
SWEeping— 2) P ﬁl
MEASuring - 4 - . \ N
[_= : oy
Wiaiting for TRIGer = 5 G |5 |5 |2 |) PN
o= = |
Unused— &) g %g !]
w (o @y {
Unused— 7 sl |sEIELT
Unused—{ g = = = E%
DCFM/DCIM | o SElEle
Mullin Progress -] (]
—— Baseband is Busy— 10
Sweep Calculating— 14)

BERT SYNChronizing— 12

Unused— 13

Unused— 14

stat-reg_2of2 Always Zero (0)—

LS |

Service Request
Enable Register

116

Chapter 3

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in aregister is represented by a decimal value based on its location in the register (see Table 3-1).

» Toenableaparticular bit in aregister, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

» To enable more than one bit, send the sum of all the bits that you want to enable.

» To verify the bits set in aregister, query the register.

Example: Enable a Register
To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to give a decima value of 65.
2. Send the sum with the command: * ESE 65.

Example: Query a Register

To query aregister for a condition, send a SCPI query command. For example, if you want to query the
Standard Operation Status Group’s Condition Register, send the command:
STATus:OPERation: CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits=1) then the query will return the decimal value 140. The
value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

Table 3-1 Status Register Bit Decimal Values
. I o)) D N || N ™| -
Decimal 2 |8 |3 |2 é QS |||
Value = |
<
Bit Number |15 |14 |13 |12 |11 |10 |9 |8 |7 |6|5|4|3|2|1]0

NOTE Bit 15 is not used and is always set to zero.

Chapter 3 117

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 3-1 on page 115 or
Figure 3-2 on page 116 for register location and names.

2. Send the unique SCPI query that reads that register.

3. Examinethe bit to see if the condition has changed.

Determining What to Monitor
You can monitor the following conditions:

e current signal generator hardware and firmware status
» whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These registers
represent the current state of the signal generator and are updated in real time. When the condition
monitored by a particular bit becomestrue, the bit setsto 1. When the condition becomes false, the bit resets
to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an event.
The transitions can be positive to negative, negative to positive, or both. To monitor a certain condition,
enable the hit associated with the condition in the associated positive and negative registers.

Once you have enabled a bit viathe transition registers, the signal generator monitorsit for achangein its
condition. If this change in condition occurs, the corresponding bit in the event register will be set to 1.
When a bit becomes true (set to 1) in the event register, it stays set until the event register isread or is
cleared. You can thus query the event register for a condition even if that condition no longer exists.

The event register can be cleared only by querying its contents or sending the * CLS command, which clears
all event registers.
Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitorsit for a change in its condition. The transition registers
are preset to register positive transitions (a change going from 0 to 1). This can be changed so the selected
bit is detected if it goes from true to false (negative transition), or if either transition occurs.

118 Chapter 3

Programming the Status Register System
Accessing Status Register Information

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

The polling method

In the polling method, the signal generator has a passive role. It tells the controller that conditions have
changed only when the controller asks the right question. Thisis accomplished by a program loop that
continually sends a query.

The polling method works well if you do not need to know about changes the moment they occur. Use
polling in the following situations:

— when you use a programming language/devel opment environment or /O interface that does not
support SRQ interrupts

— when you want to write a ssmple, single-purpose program and don’'t want the added complexity of
setting up an SRQ handler

The servicerequest (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more activerole. It
tells the controller when there has been a condition change without the controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a change
using the polling method, the program must repeatedly read the registers.) Use the SRQ method in the
following situations:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, 1/O interface, and programming environment must support SRQ interrupts (for
example: BASIC or VISA used with GPIB and VX1-11 over the LAN). Using this method, you must do the
following:

1

Determine which bit monitors the condition.

. Send commands to enable the bit that monitors the condition (transition registers).
. Send commands to enable the summary bits that report the condition (event enable registers).

2
3
4.
5

Send commands to enable the status byte register to monitor the condition.

Enable the controller to respond to service requests.

Chapter 3 119

Programming the Status Register System
Accessing Status Register Information

The controller responds to the SRQ as soon asit occurs. As aresult, the time the controller would otherwise
have used to monitor the condition, asin aloop method, can be used to perform other tasks. The application
determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the RQS hit in the status byte register is set.
In order for the controller to respond to the change, the Service Regquest Enable Register needs to be enabled
for the hit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status Byte Register that will trigger a
service request. Send the * SRE <num> command where <num> is the sum of the decimal values of the bits
you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation Status
register summary bit isset to 1, aservice request is generated) send the command * SRE 128. Refer to Figure
3-1 on page 115 or Figure 3-2 on page 116 for bit positions and values.

The query command * SRE? returns the decimal value of the sum of the bits previously enabled with the
*SRE <num> command.

To query the Status Byte Register, send the command * STB?. The response will be the decimal sum of the
bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136 (bit 7=128 and bit
3=8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at atime can set
the RQS bit. All bitsthat are asserting an SRQ will be read as part of the status byte when it
isqueried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte's RQS hit to 1. Both actions are necessary to
inform the controller that the signal generator requires service. Asserting SRQ informs the controller that
some device on the bus requires service. Setting the RQS bit allows the controller to determine which signal
generator requires service.

This processisinitiated if both of the following conditions are true:

» The corresponding bit of the Service Request Enable Register isalso set to 1.
» Thesignal generator does not have a service request pending.

A servicerequest is considered to be pending between the time the signal generator’s SRQ processis
initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the controller
to perform a serial poll when SRQ is true. Each device on the bus returns the contents of its status byte
register in response to this poll. The device whose request service summary bit (RQS) bit is set to 1 isthe

120 Chapter 3

Programming the Status Register System
Accessing Status Register Information

device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bitsin the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode
set to continuous, restarting the measurement (INIT command) can cause the measuring bit
to pulse low. This causes an SRQ when you have not actually reached the “end-of-sweep”
or measurement condition. To avoid this, do the following:

1. Sendthecommand | N Ti at e: CONTi nuous OFF.
2. Set/enable the status registers.
3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditionsis done at the highest level, using the IEEE 488.2 common
commands listed below. You can set and query individual status registers using the commandsin the STATus
subsystem.

*CL S (clear status) clearsthe Status Byte Register by emptying the error queue and clearing all the event
registers.

*ESE, * ESE? (event status enable) sets and queriesthe bitsin the Standard Event Enable Register which
is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part of the
Standard Event Status Group.

*OPC, * OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the current
processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request Enable
Register, the Standard Event Status Enable Register, and device-specific event enable registers at power
on. The query returns the flag setting from the * PSC command.

*SRE, * SRE? (service request enable) sets and queries the value of the Service Request Enable Register.
*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-1EEE 488.2 enable registers, and error/event queue
enable registers. (Refer to Table 3-2.)

Chapter 3 121

Programming the Status Register System
Accessing Status Register Information

Table 3-2 Effects of :STATus:PRESet
Register Value after
:STATus:PRESet

:STATus.OPERation:ENABIle 0
:STATus.OPERation:NTRansition 0
:STATus.OPERation: PTRransition 32767
:STATus.OPERation:BA Seband:ENABIe 0
:STATus. OPERation:BA Seband:NTRansition 0
:STATus.OPERation:BA Seband: PTRransition 32767
:STATus.QUEStionable:CAL ibration:ENABIle 32767
:STATus.QUEStionable:CAL ibration:NTRansition 32767
:STATus.QUEStionable:CAL ibration:PTRansition 32767
:STATus.QUEStionable:ENABIe 0
:STATus.QUEStionable:NTRansition 0
:STATus.QUEStionable:PTRansition 32767
:STATus.QUEStionable:FREQuency:ENABIe 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus: QUEStionable: FREQuency:PTRansition 32767
:STATus.QUEStionable:MODulation:ENABIle 32767
:STATus.QUEStionableMODulation:NTRansition 32767
:STATus.QUEStionable:MODulation:PTRansition 32767
:STATus.QUEStionable:POWer:ENABIe 32767
:STATus.QUEStionable:POWer:NTRansition 32767
:STATus.QUESti onable:POWer:PTRansition 32767
:STATus.QUEStionable:BERT:ENABIe 32767
:STATus.QUEStionable:BERT:NTRansition 32767
:STATus.QUEStionable:BERT:PTRansition 32767

122 Chapter 3

Status Byte Group

The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

Programming the Status Register System
Status Byte Group

Status Byte Register

0

Njojlo|d|lw|d|—=

Unused

Unused

Error/Event Queue Summary Bit

Data Questionable Summary Bit

Message Available (MAV)

Standard Event Summary Bit

Request Service (RQS)

Operation Status Summary Bit

gy g g gy a9

-
Lt

N P{x)-

Service Request Enable Register

ck721a

Chapter 3

123

Programming the Status Register System
Status Byte Group

Status Byte Register

Table 3-3 Status Byte Register Bits
Bit | Description
0,1 | Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1in thisbit position indicates that the SCPI error queue is not empty.
The SCPI error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in thisbit position indicates that the Data Questionable
summary bit has been set. The Data Questionable Event Register can then be read to determine the specific
condition that caused this bit to be set.

4 M essage Available. A 1 in this bit position indicates that the signal generator has data ready in the output
queue. There are no lower status groups that provide input to this hit.

5 Sandard Event Satus Summary Bit. A 1in thishit position indicates that the Standard Event summary bit
has been set. The Standard Event Status Register can then be read to determine the specific event that caused
this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least
one reason to require service. Thishit isalso called the Master Summary Status bit (MSS). Theindividua bits
in the Status Byte are individually ANDed with their corresponding service request enable register, then each
individual bit value is ORed and input to this bit.

7 Sandard Operation Satus Summary Bit. A 1in this bit position indicates that the Standard Operation
Status Group's summary bit has been set. The Standard Operation Event Register can then be read to
determine the specific condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).
Decimal sum =128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS hit)
124 Chapter 3

Programming the Status Register System
Status Byte Group

Service Request Enable Register

The Service Request Enable Register lets you choose which bitsin the Status Byte Register trigger a service

request.

*SRE <dat a>

Example:

Query:
Response:

<dat a> isthe sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 3-1 on page 115 or Figure 3-2 on
page 116.

To enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit setsto 1. Send the command * SRE 160 (128 + 32).

* SRE?

The decimal value of the sum of the bits previously enabled with the* SRE <dat a>
command.

Chapter 3

125

Programming the Status Register System

Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group consist of the registers listed
below. The Standard Event Status Group is similar but does not have negative or positive transition filters or

acondition register.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuoudly monitors the hardware and firmware status of the
signal generator. Thereis no latching or buffering for a condition register; it is updated
inreal time.

A negative transition filter specifies the bits in the condition register that will set
corresponding bitsin the event register when the condition bit changes from 1 to 0.

A positive transition filter specifies the bits in the condition register that will set
corresponding bitsin the event register when the condition bit changes from O to 1.

An event register latches transition events from the condition register as specified by the
positive and negative transition filters. Once the bits in the event register are set, they
remain set until cleared by either querying the register contents or sending the* CLS
command.

An enable register specifies the bitsin the event register that generate the summary bit.
The signal generator logically ANDs corresponding bitsin the event and enable
registers and ORs all the resulting bits to produce a summary bit. Summary bits are, in
turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status summary bits.
In each status group, corresponding bits in the condition register are filtered by the negative and positive
transition filters and stored in the event register. The contents of the event register arelogically ANDed with
the contents of the enable register and the result islogically ORed to produce a status summary bit in the
Status Byte Register.

126

Chapter 3

Programming the Status Register System
Status Groups

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status Byte
Register. This group consists of the Standard Event Status Register (an event register) and the Standard
Event Status Enable Register.

Operation Complete

Request Bus Control

Query Error

Device Dependent Error

Execution Error
Command Error

User Request

Power On
l Y VY VY YVYY
3 2 1 O

Event Register 7 6 5 4

Event
Engle Register 7 6 5 4 38 2

vy To Status Byte Register Bit #5 ok728a

Chapter 3 127

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 3-4 Standard Event Status Register Bits
Bit | Description
0 Operation Complete. A 1in thisbit position indicates that all pending signal generator operations were

completed following execution of the * OPC command.

1 Request Control. Thisbit is aways set to 0. (The signal generator does not request control.)

2 Query Error. A 1inthishit position indicates that a query error has occurred. Query errors have SCPI error
numbers from —499 to —-400.

3 Device Dependent Error. A 1inthisbit position indicates that a device dependent error has occurred. Device
dependent errors have SCPI error numbers from =399 to =300 and 1 to 32767.

4 Execution Error. A 1inthishit position indicatesthat an execution error has occurred. Execution errors have
SCPI error numbers from —299 to —200.

5 Command Error. A 1inthisbit position indicates that acommand error has occurred. Command errors have
SCPI error numbers from =199 to —100.

6 User Request Key (Local). A 1in this bit position indicates that the Local key has been pressed. Thisistrue
even if the signal generator isin local lockout mode.

7 Power On. A 1in thisbit position indicates that the signal generator has been turned off and then on.

Query: * ESR?
Response: The decimal sum of the bitsset to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status Register
set the summary hit (bit 5 of the Status Byte Register) to 1.

*ESE <dat a> <dat a> isthe sum of the decimal values of the bits you want to enable.

Example: To enable hit 7 and hit 6 so that whenever either of those bitsis set to 1, the Standard
Event Status summary bit of the Status Byte Register is set to 1. Send the command * ESE
192 (128 + 64).

Query: * ESE?
Response: Decimal value of the sum of the hits previously enabled with the* ESE <dat a>
command.

128

Chapter 3

Programming the Status Register System
Status Groups

Standard Operation Status Group

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte Register.
This group consists of the Standard Operation Condition Register, the Standard Operation Transition Filters
(negative and positive), the Standard Operation Event Register, and the Standard Operation Event Enable
Register.

I/Q CAlLibrating
Settling
Unused
SWEeping
MEASuring
Waiting for TRIGger
Unused
Unused
Unused
DCFM/DCGM Null in Progress
Baseband is busy
SWEep Calculating
BERT SYNChronizing
Unused

Unused

Always Zero (0)
l YyYvyy

. Y Y YYYY VYV VUV
Standard Operation 115 14 13 12 1110 9 8 7 6 54 3 2 1 0
YV VY YYYVYVYVYYVVY
Standard O i
_?}:i?g}a:e;nl::?m |15 14 13 12 1110987 654 321 0]
I EEEEREEEEIEEEEEER
g?é’eﬂi?;gifmﬂmhs 1413 12 1110987 6543 21 0
ransition riter
Y Y Y Y Y Y YYYVYVYYYVYY
Bianiegrer " [15 14 13 2 110987 654321 0]
&
&
&
&
&
& &
_@ ol) Y |
& v
@5”& oY
® X
Standard Operation T
Event 1514 13 12 1110 987 654 32 1 0|
nable Register
¥ To Status Byte Register Bit #7

ck702g

Chapter 3 129

Programming the Status Register System

Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits

Bit Description

0 1/Q Calibrating. A 1in this position indicates an I/Q calibration isin process.

1 Settling. A 1inthishit position indicates that the signal generator is settling.

2 Unused. This bit position is set to 0.

3 Sweeping. A 1inthisbit position indicates that a sweep isin progress.

4 Measuring. Al in this bit position indicates that a bit error rate test isin progress

5 Waiting for Trigger. A 1in thisbit position indicates that the source isin a“wait for trigger” state.
When option 300 is enabled, a1 in this bit position indicates that TCH/PDCH synchronization is
established and waiting for atrigger to start measurements.

6,7,8 Unused. These bits are always set to 0.

9 DCFM/DC@M Null in Progress. A 1in this bit position indicates that the signal generator is
currently performing a DCFM/DC®M zero calibration.

10 Baseband isBusy. A 1inthishit position indicates that the baseband generator is communicating or
processing. Thisisasummary bit. See the “ Baseband Operation Status Group” on page 132 for more
information.

11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing the
necessary pre-sweep calculations.

12 BERT Synchronizing. A 1in thisbit position is set while the BERT is synchronizing to ‘BCH’, then
‘TCH’ and thento ‘PRBS'.

12, 13, 14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: CPERat i on: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Example: The decimal value 520 is returned. The decimal sum =512 (bit 9) + 8 (bit 3).

130

Chapter 3

Programming the Status Register System
Status Groups

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changesin the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands:

Queries:

STATus: CPERat i on: NTRansi ti on <val ue> (negative transition), or
STATus: CPERat i on: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

STATus: CPERat i on: NTRansi ti on?
STATus: CPERat i on: PTRansi ti on?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as specified by
thetransition filters. Event registers are destructive read only. Reading data from an event register clearsthe
content of that register.

Query:

STATus: CPERat i on[: EVENt] ?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation Event
Register set the summary bit (bit 7 of the Status Byte Register) to 1

Command:

Example:

Query:
Response:

STATus: CPERat i on: ENABI e <val ue>, where
<val ue>isthe sum of the decimal values of the bits you want to enable.

To enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Standard
Operation Status summary bit of the Status Byte Register is set to 1. Send the command
STAT: OPER ENAB 520 (512 + 8).

STATus: CPERat i on: ENABI e?

Decimal value of the sum of the bits previoudly enabled with the
STATus: OPERat i on: ENABI e <val ue> command.

Chapter 3

131

Programming the Status Register System
Status Groups

Baseband Operation Status Group

The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the Standard
Operation Status Group. This group consists of the Baseband Operation Condition Register, the Baseband
Operation Transition Filters (negative and positive), the Baseband Operation Event Register, and the
Baseband Operation Event Enable Register.

Baseband 1 Busy
Baseband 1 Communicating
Unused
Unused
Unused
Unused

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0)
—l Yy Yy v

Baseband Operation

ConditionFlspgistsr |15 1413 12 1
Baseband Operation + + +
Positive [15 14 13 12 1
Transition Filter + + +
Baseband Operation

Negative 15 14 183 12 1

Transition Filter
YV VY

BasebandOperationl.lS 14 13 12 1

Event Register
& %
&
{&

-l
%

ol
-
-
B
-
-
-
-
-
-~
-
-
-
-
-
-
-

-
S[eo =

rl—
© |- © (@ © & ©
@ | O g O | @
~N g S N
D |- D - D | D
O | U1 g O | O
Bl o IR L o IR o
W e W e W e W

—

—
—_
o

e
e —

(S N N T)
-] o] o]

—ry
o

&

o
)t

"
(&)
oo

o el
©=

—
-

Baseband Operation
Event
Enable Register

Y To Operation Status Register Bit #10 k7120

(15
&) o
f
1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0|

132 Chapter 3

Programming the Status Register System
Status Groups

Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-6 Baseband Operation Condition Register Bits
Bit Description
0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.
1 Baseband 1 Communicating. A 1in thisbit position indicates that the signal generator baseband
generator is handling data 1/O.
2-14 Unused. This bit position is set to 0.
15 Always 0.
Query: STATus: CPERat i on: BASeband: GONDi t i on?

Response: The decimal sum of the bits set to 1

Example: The decimal value 2 isreturned. The decimal sum = 2 (bit 1).

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: CPERat i on: BASeband: NTRansi ti on <val ue> (negative transition), or
STATus: CPERat i on: BASeband: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: CPERat i on: BASeband: NTRansi ti on?
STATus: CPERat i on: BASeband: PTRansi ti on?

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as specified by
thetransition filters. Event registers are destructive read only. Reading data from an event register clearsthe
content of that register.

Query: STATus: CPERat i on: BASeband[: EVENt] ?

Chapter 3 133

Programming the Status Register System
Status Groups

Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register lets you choose which bits in the Baseband Operation Event
Register can set the summary bit (bit 7 of the Status Byte Register).

Command: STATus: CPERat i on: BASeband: ENABl e <val ue>, where
<val ue>isthe sum of the decimal values of the bits you want to enable.

Example: To enable bit 0 and bit 1 so that whenever either of those bitsis set to 1, the Baseband
Operation Status summary hit of the Status Byte Register is set to 1. Send the command
STAT: OPER: ENAB 520 (512 + 8).

Query: STATus: CPERat i on: BASeband: ENAB| e?

Response: Decimal value of the sum of the bits previoudly enabled with the
STATus: OPERat i on: BASeband: ENABI e <val ue> command.

134 Chapter 3

Data Questionable Status Group

Programming the Status Register System

Status Groups

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the Status Byte
Register. This group consists of the Data Questionable Condition Register, the Data Questionable Transition

Filters (negative and positive), the Data Questionable Event Register, and the Data Questionable Event
Enable Register.

Unused

Unused
Unused

POWer (summary)

TEMPerature (OVEN COLD)

FREQuency (summary)

Unused
MODulation (summary)

CALibration (summary)

SELFtest

Unused
Unused

BERT (summary)
Unused

Unused

Always Zero (0)

Enable Register

_ Y Y VY Y Y Y YYYVYVYVVY VY
Raton pereiar 15 S NI I fl
Egéii_etéJEsFt_::mable 1514 13 12 1110 98 7 654 3 2 1 0]
ransition Filter

. I BEEBEEEEETEEEEEEY
gg;:ﬁ%i::able|15 1413 121110987 65 4 3 2 1 o|

Y VYV VY VYVYYVYVYYVY
Data GuEstionable 15 14 13 12 1110 98 7 6 5 4 3 2 1 0|
H &})
& %
& &
@ 231
2© Y y
I §
@Dr&)&sv‘
\S C;)f&
Data QUEStionable
Event [t5 141312 1110987654321 0]

I To Status Byte Register Bit #3

ck722k

Chapter 3

135

Programming the Status Register System

Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-7

Data Questionable Condition Register Bits

Bit

Description

0,12

Unused. These hits are always set to 0.

3

Power (summary). Thisisasummary bit taken from the QUESti onable:POWer register. A 1 inthishit
position indicates that one of the following may have happened: The ALC (Automatic Leveling
Control) is unable to maintain aleveled RF output power (i.e., ALCis UNLEVELED), the reverse
power protection circuit has been tripped. See the “ Data Questionable Power Status Group” on

page 139 for more information.

Temperature (OVEN COLD). A 1inthisbit position indicates that the internal reference oscillator
(reference oven) is cold.

Frequency (summary). Thisisasummary bit taken from the QUEStionable:FREQuency register. A 1
in this bit position indicates that one of the following may have happened: synthesizer PLL unlocked,
10 MHz reference VCO PLL unlocked, 1 GHz reference unlocked, sampler, Y O loop unlocked or
baseband 1 unlocked. For more information, see the “ Data Questionable Frequency Status Group” on
page 142.

Unused. Thishitisalways set to 0.

Modulation (summary). Thisisasummary bit taken from the QUEStionable:M ODulation register. A
linthisbit position indicates that one of the following may have happened: modulation source 1
underrange, modulation source 1 overrange, modulation source 2 underrange, modulation source 2
overrange, modulation uncalibrated. See the “ Data Questionable Modulation Status Group” on

page 145 for more information.

Calibration (summary). Thisis asummary bit taken from the QUEStionable:CALibration register. A
1linthisbit position indicates that one of the following may have happened: an error has occurred in
the DCFM/DC®M zero calibration, an error has occurred in the 1/Q calibration. See the “Data
Questionable Calibration Status Group” on page 148 for more information.

Self Test. A 1inthisbit position indicates that a self-test has failed during power-up. This bit can only
be cleared by cycling the signal generator’s line power. * CLS will not clear this bit.

10, 11

Unused. These bits are always set to 0.

12

BERT (summary). Thisis asummary bit taken from the QUEStionable:BERT register. A 1 in this bit
position indicates that one of the following occurred: no BCH/TCH synchronization, no data change,
no clock input, PRBS not synchronized, demod/DSP unlocked or demod unleveled. See the “Data
Questionable BERT Status Group” on page 151 for more information.

136

Chapter 3

Programming the Status Register System
Status Groups

Table 3-7 Data Questionable Condition Register Bits

Bit Description

13,14 Unused. These bitsare set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: CONDi ti on?
Response: The decimal sum of the bitsset to 1

Example: The decimal value 520 is returned. The decimal sum =512 (bit 9) + 8 (bit 3).

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition register set
corresponding bitsin the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESt i onabl e: PTRansi ti on?

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified by
thetransition filters. Event registers are destructive read-only. Reading data from an event register clearsthe
content of that register.

Query: STATus: QUESti onabl e[: EVENt] ?

Chapter 3 137

Programming the Status Register System
Status Groups

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable Event
Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus: QUESt i onabl e: ENABI e <val ue>command where <val ue> isthe sum of the
decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Data Questionable
Status summary bit of the Status Byte Register is set to 1. Send the command
STAT: QUES: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: ENAB| e?

Response: Decimal value of the sum of the bits previoudly enabled with the
STATus: QUESt i onabl e: ENABI e <val ue> command.

138 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Power Status Group

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in the Data
Questionable Condition Register. This group consists of the Data Questionable Power Condition Register,
the Data Questionable Power Transition Filters (negative and positive), the Data Questionable Power Event
Register, and the Data Questionable Power Event Enable Register.

Reverse Power Protection Tripped
Unleveled
1Q Mod Overdrive
Lowband Detector Fault
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0) —l

Data QUEStionable Y VY VY
POWer

Condition Register 151413 12 11 10

Data QUEStionable + + + +

POWer [15 14 13 12 1

Transition Filter
Data QUEStionable + + + +
POWer [15 14 13 12 1

Negative

Transition Filter + + + +

Power " 15 14 13 12 11 10

Event Register

-
<
%
-
<
Bl
-
<%
-
%

=

L
L

=

10

=

10

| = |
e O [
© (4] © | © & ©

O | O |— O [O |
N N N
O [O [O [O [«
O [O [O [O
DD — D - -
Wl W W W
N | NN N [
A e S
OO0 4o

&
&

&

&

@

o

)

R0
)
™)

Data QUEStionable
POWer

Event 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

N (e
S
O

o

Y To Data Questionable Status Register Bit #3 ck704¢

Chapter 3 139

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 3-8 Data Questionable Power Condition Register Bits

Bit Description

0 Rever se Power Protection Tripped. A 1in this bit position indicates that the reverse power protection
(RPP) circuit has been tripped. There is no output in this state. Any conditions that may have caused the
problem should be corrected. The RPP circuit can be reset by sending the remote SCPI command:
OUTput:PROTection:CLEar. This bit is always set to 0.

1 Unleveled. A 1in this bit indicates that the output leveling loop is unable to set the output power.

2 1Q Mod Overdrive A 1in thisbit indicates that the signal level into the 1Q modulator istoo large.

3 Lowband Detector Fault A 1 in thisbit indicates that the lowband detector heater circuit has failed.

2-14 | Unused. These bits are dways set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: POAér: CONDi t i on?

Response: The decimal sum of the bitsset to 1

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: POMr : NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: POMr: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: POMr : NTRansi ti on?
STATus: QUESt i onabl e: POMr : PTRansi ti on?

140 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query: STATus: QUESti onabl e: PONer[: EVENL] ?

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bitsin the Data Questionable
Power Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: POAer : ENABI e <val ue>command where <val ue> isthesum
of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Data Questionable
Power summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: PON ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: PONér : ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: PONer : ENABI e <val ue> command.

Chapter 3 141

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5 in the
Data Questionable Condition Register. This group consists of the Data Questionable Frequency Condition
Register, the Data Questionable Frequency Transition Filters (negative and positive), the Data Questionable
Frequency Event Register, and the Data Questionable Frequency Event Enable Register.

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked
Baseband 1 Unlocked
Unused
Sampler Loop Unlocked
YO Loop Unlocked
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —m8
Always Zero (0)

Data CJI.IES1i|:una|:>he_l Y Y VY
Conaon Register 1514 18 12 1
Data QUEStianable + * * +

FREGuency [15 14 18 12 1

Transition Filter

Data QUEStionable + + + +
FREQuency [15 14 13 12 1
Transition Filter 'EER"

Data QUEStionable
PAEGuanoy [15 14 18 12 1
Event Register

-+
-l
-
-l
-+
-
-
-

-
S (S |
© (W O (4 O (A ©

| — |
—

= | —
]

j—y
—_
[=]

|
L
-

o g ® g 0 | o |a
=~ e e~ e~
[N SR N
o |l ol o]
TN N I S N
O e 0O el GO e O

L
o et
ot
D)
o ot
o e o [1o [o] o [

=]
-
o

&
&

&

&

@ 2

g

Data QUEStionable
FREQuency

Event 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

— s

(=]

¥ To Data Questionable Status Register Bit #5 k7060

142 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Table 3-9 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 inthisbit indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is unlocked.
2 1 Ghz Ref Unlocked. A 1inthisbit indicates that the 1 Ghz reference signal is unlocked.
3 Baseband 1 Unlocked. A 1in this bit indicates that the baseband 1 generator is unlocked.
4 Unused. Thishit is set to 0.

5 Sampler Loop Unlocked. A 1in thisbit indicates that the sampler loop is unlocked.

6 YO Loop Unlocked. A 1 inthis bit indicates that the YO loop is unlocked.

7-14 | Unused. These bits are dways set to 0.
15 Always 0.
Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of hit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: FREQuency: NTRansi ti on <val ue> (negative transition) or
STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive transition)
where <val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: FREQuency: NTRansi ti on?
STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

Chapter 3 143

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event registers are
destructive read-only. Reading data from an event register clears the content of that register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

Data Questionable Frequency Event Enable Register

L ets you choose which bits in the Data Questionabl e Frequency Event Register set the summary bit (bit 5 of
the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENAB| e <val ue>, where <val ue> isthe sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: FREQ ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: FREQuency: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABI e <val ue> command.

144 Chapter 3

Programming the Status Register System

Data Questionable Modulation Status Group

Status Groups

The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7 in the
Data Questionable Condition Register. This group consists of the Data Questionable M odulation Condition

Register, the Data Questionable Modulation Transition Filters (negative and positive), the Data
Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable Register.

Y

Modulation 1 Undermod
Modulation 1 Overmod
Modulation 2 Undermod
Modulation 2 Overmod
Modulation Uncalibrated

Unused

Unused
Unused

Unused

Unused

Unused
Unused

Unused

Unused
Unused

Always Zero (0) —l
Data QUEStionable Yy Y VY Y

Y Y Y YYYYYYYY
MOD i
MODiation er |15 14 13 12 1110 987 654 3 2 1 0
Y e N EETEEEEEE Y
MODulation
Posiive [15 14 13 12 11 10 987 6 54 3 2 1 0 |
ransition Fiiter
DataGUEStionacle ¥ ¥ ¥ ¥ ¥ Y Y YY VY YV VVY
NODuation [514 1312 1110987654321 0|
Transition Filter EEEEEETEEEEEEE
E%%ﬁgffn“c’”ab'e|15 14 13 12 1110 98 7 65 4 3 2 1 0 |
Event Register
25
&
L=
&
&
&
< -3
25¥

03§

ywOk
DataOUEStionable | T
MODulation
Event 1514 13 12 1110 98 7 6 54 3 2 1 0|
Enable Register

I To Data Questionable Status Register Bit #7 oK708c

Chapter 3

145

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Table 3-10 Data Questionable Modulation Condition Register Bits

Bit Description

0 Modulation 1 Undermod. A 1in this bit indicates that the External 1 input, ac coupling on, is less than
0.97 volts.

1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is more than
1.03 volts.

2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on, is less than
0.97 volts.

3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is more than
1.03 volts.

4 Modulation Uncalibrated. A 1 in this bit indicates that modulation is uncalibrated.

5-14 | Unused. ThishitisawayssettoO.

15 Always 0.

Query: STATus: QUESt i onabl e: MXDul ati on: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changesin the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on <val ue> (negative transition),
or STATus: QUESt i onabl e: MCDul ati on: PTRansi ti on <val ue> (positive
transition), where <val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: MDul at i on: NTRansi ti on?
STATus: QUESt i onabl e: MXDul ati on: PTRansi ti on?

146 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query: STATus: QUESti onabl e: MDul ation[: EVENt] ?

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bitsin the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable Condition
Register) to 1.

Command: STATus: QUESt i onabl e: MODul at i on: ENAB| e <val ue> command where <val ue>is
the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: MOD: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: MODul at i on: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: MODul ati on: ENABI e <val ue> command.

Chapter 3 147

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8 in the
Data Questionable Condition Register. This group consists of the Data Questionable Calibration Condition
Register, the Data Questionable Calibration Transition Filters (negative and positive), the Data Questionable
Calibration Event Register, and the Data Questionable Calibration Event Enable Register.

DCFM/DCM Zero Failure
1/Q Calibration Failure
Unused
Unused
Unused

Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused
Unused

Unused ——MM —

Always Zero (0)

82t|:’=1_bQUI_EStionable l Yy v
ibration

Condition Register 15 14 13 12

Data QUEStionable

CALibration + + +
Positive | 15 14 13 12 1
Transition Filter + + + +
Data QUEStionable

CALibration |15 14 13 12 1
Negative

Transition Filter + + + +

Data QUEStionable
CALibration |15 14 13 12 1

Event Register
&
(&
@ i
&
&

-
-
-l
-
-
-l
Bl
-

<
-l
d

—_
O

]

| = (e
o e 3 =
© |4 © |4 © e © |

—_

g
-
@]
-l =

® |l © lg— ® | © |-
~N o N - N N

O [O M O W O [
Ol (- 01 e+ O | O |-
Dl DD |
W [w e w0 | w

N [[D
—

O |4 O |[e O |4 O

-
—
o

»
<

o)

y

y

& f&
Data QUES tionable s
]

CALibration
0]

Event . 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Enable Register

¥
®

el

Y To Data Questionable Status Register Bit #8 ck720a

148 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of the
signal generator. Condition registers are read only.

Table 3-11 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM/DC®M Zero Failure. A 1inthis bit indicates that the DCFM/DC®M zero calibration routine has
failed. Thisisacritical error. The output of the source has no validity until the condition of thishit is 0.

1 1/Q Calibration Failure. A 1in thisbit indicates that the 1/Q modulation calibration experienced afailure.

2-14 | Unused. These bits are dways set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: CALi brati on: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of hit state changesin the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on <val ue> (negativetransition),
or STATus: QUESt i onabl e: CALi brati on: PTRansi ti on <val ue> (positive
transition), where <val ue> is the sum of the decimal values of the hits you want to enable.

Queries: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on?
STATus: QUESt i onabl e: CALi brati on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query: STATus: QUESti onabl e: CALi bration[: EVENt]?

Chapter 3 149

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bitsin the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable Condition
register) to 1.

Command: STATus: QUESt i onabl e: CALi brati on: ENABI e <val ue>, where <val ue> isthe sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Data Questionable
Calibration summary hit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: CAL: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: CALi br ati on: ENABI e?

Response: Decimal value of the sum of the bits previoudly enabled with the
STATus: QUESt i onabl e: CALi br ati on: ENABI e <val ue>command.

150 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable BERT Status Group

The Data Questionable BERT Status Group is used to determine the specific event that set bit 12 in the Data
Questionable Condition Register. The Data Questionable Status group consists of the Data Questionable
BERT Condition Register, the Data Questionable BERT Transition Filters (negative and positive), the Data
Questionable BERT Event Register, and the Data Questionable BERT Event Enable Register.

No Clock
Mo Data Change
PRBS Sync Loss
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused

Downconv/Demod
Unlocked

Demeod DSP
Ampl Out of Range

Syne. to BCH/TCH/PDCH
Waiting for TCH;PDCH

Always Zero (0)

-
-
-4
~
-
-
&
-l
-
-
-
l
%

Dala QUESl:onabl

r
cgnd“m%glsler 15 14 13121110987 654321 0|
casovtsionse ¥ ¥ ¥ ¥ 4 A A I IITETY
Pasitve |15 14 13 12 1110 987 654 3 2 1 0|
ransition Filter
Data QUEStionable + ‘ + + * + + + + * + + + + + +
e e [1514 13 12 1110 98 7 654 3 2 1 0|
Transition Filter + + ++ ‘ *++++++++++
EE‘&‘TQUES"°"&‘D'9|15 1413 12 1110 98 7 654 3 2 1 0 |
Event Register
&
&
&
&
&
& &
+ 2o ¥
®Y
D3 3

& (‘é Y

F MOl
Data QUEStionable | f
BERT
Event 1514 13 12 1110 98 7 654 3 2 1 0|

|_Enable Register
¥ To Data Questionable Status Register Bit #12 ck710e

Chapter 3 151

Programming the Status Register System
Status Groups

Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 3-12 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1inthishit indicates no clock input for more than 3 seconds.

1 No Data Change. A 1in thisbit indicates no data change occurred during the last 200 clock signals.

2 PRBS Sync Loss. A 1isset while PRBS synchronization is not established. *RST sets the bit to zero.
3-10 | Unused. These bits are dways set to O.

11 Down conv. / Demod Unlocked. A 1in this bit indicates that either the demodulator or the down converter
isout of lock.

12 Demod DSP Ampl out of range. A 1 in this bit indicates the demodulator amplitude is out of range. The
*RST command will set this bit to zero (0).

13 Sync. to BCH/TCH/PDCH. If the synchronization source is BCH, a 1 in this bit indicates BCH
synchronization is not established it does not indicate the TCH/PDCH synchronization status. If the sync
sourceis TCH or PDCH, a1 in this bit indicates that TCH or PDCH synchronization is not established.
*RST setsthe bit to zero.

14 Waiting for TCH/PDCH. A 1inthisbit indicates that a TCH or PDCH midamble has not been received.
Thishit isset when bit 13 isset. The bit isalso set when the TCH or PDCH synchronization was once locked
and then lost (in this case the front panel displays“WAITING FOR TCH (or PDCH)”. *RST set the hit to
zero.

15 Always 0.

Query: STATus: QUESt i onabl e: BERT: CONDi t i on?
Response: The decimal sum of the bitsset to 1
152 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changesin the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands:

Queries:

STATus: QUESt i onabl e: BERT: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: BERT: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

STATus: QUESt i onabl e: BERT: NTRansi ti on?
STATus: QUESt i onabl e: BERT: PTRansi ti on?

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query:

STATus: QUESti onabl e: BERT[: EVENt] ?

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data Questionable
BERT Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Command:

Example:

Query:
Response:

STATus: QUESt i onabl e: BERT: ENABl e <val ue> command where <val ue> isthe sum
of the decimal values of the bits you want to enable

Enable bit 9 and bit 3 so that whenever either of those bitsis set to 1, the Data Questionable
BERT summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: BERT: ENAB 520 (512 + 8).

STATus: QUESt i onabl e: BERT: ENAB| e?

Decimal value of the sum of the bits previoudly enabled with the
STATus: QUESt i onabl e: BERT: ENABI e <val ue> command.

Chapter 3

153

Programming the Status Register System
Status Groups

154 Chapter 3

4 Downloading and Using Files

Computer generated data can be downloaded into the signal generator. Depending on the options present, the
signal generator can accept ARB waveform data, user file data, FIR filter coefficient data, and data
downloads directly to waveform memory.

This chapter explains signal generator memory, and the different waveform download methods:

“ARB Waveform Data Downloads’ on page 156

“Understanding ARB Waveform File Composition and Encryption” on page 180
“User Bit/Binary File Data Downloads’ on page 183

“FIR Filter Coefficient Downloads” on page 195

“Downloads Directly into Pattern RAM (PRAM)” on page 199

“Data Transfer Troubleshooting” on page 205

NOTE The procedures in this chapter were written with the assumption that you are familiar with
the signal generator’s front panel controls and softkey menus. If you are not, please refer to
the User’s Guide.

155

Downloading and Using Files
ARB Waveform Data Downloads

ARB Waveform Data Downloads

The signal generator accepts I/Q waveform data downloads. After downloading the data file into
non-volatile memory, the file can be loaded into volatile memory and then played. These user-defined 1/Q
waveforms can also be sequenced together with other waveforms and played as part of awaveform
sequence.

NOTE The signal generator can use waveform files devel oped for the E443xB model signal
generators. Refer to “Downloading E443xB Signal Generator Files’ on page 174 for
information on how to download these file types.

The I/Q waveform datais used to drive the | and Q ports of the I/Q modulator. The waveform datais
described using 16-bit | and 16-bit Q integer valuesin 2's complement format. The | and Q data values are
interleaved, creating asingle 1/Q waveform datafile. The 2-byte | integer and 2-byte Q integer values, along
with amarker byte make up one sample (one waveform point). There are five bytes of datafor every sample
as shown in Table 4-1.

The signal generator uses a marker file that is aways associated with an 1/Q waveform file. If you do not
create a marker file for the 1/Q waveform file then the signal generator will automatically create one. This
automatically generated default marker file consists of all zeros. The marker data drives the signal
generator’s EVENT output connectors.

e Marker bit 1 drives EVENT 1 (Rear-panel BNC)
e Marker bit 2 drives EVENT 2 (Rear-panel BNC)
* Marker bit 3 drives EVENT 3 (Rear-panel Auxiliary D-Connector pin 19)
* Marker bit 4 drives EVENT 4 (Rear-panel Auxiliary D-Connector pin 18)

NOTE The default marker file is automatically created when no user-defined marker fileis
provided. The creation is done when the I/Q waveform file is loaded into volatile WFM 1
(waveform memory) prior to playing. If the default marker fileis used, toggle the Pulse/RF
Blank (None) softkey to None.

The marker file consists of 8-bit samples with each sample having four marker bits and four unused bits. The
result isthat the 1/Q file will have four times as many bytes as the marker file. See Table 4-1 for more detail
on thefile structure.

The signal generator uses this two-file format when generating waveform data. More details are given in the
following sections of this chapter.

156 Chapter 4

Downloading and Using Files

ARB Waveform Data Downloads

Table 4-1

1/Q DataFile Structure

Sample 1 Sample 2

| 16 bits Q 16 hits | 16 bits Q 16 hits

2 bytes 2 bytes 2 bytes 2 bytes
Marker File Structure

4 bits unused Mg 4 bitsLSB 4 bits unused M4 4 bits LSB

MSB MSB

1 byte 1 byte

Bit-value and Output Power

Bit-value and output-power:

e 0=0volts

e 32768 gives negative full-scale output

e 32767 gives positive full-scale output

Types of Arbitrary Waveform Generator Memory

Waveform data can be saved to volatile memory (called waveform memory or WFM1) and non-volatile
memory (called NVWFM memory). The datain waveform memory is lost whenever the signal generator’s
line power is cycled. If Option 005 is not installed, then the signal generator provides approximately 3
megasamples of non-volatile memory. With Option 005 there is approximately one gigasample of NVWFM

memory available.

Waveforms stored in NVWFM memory must be moved to volatile memory in order to be sequenced and
played. Moving either awaveform file or a maker file between the two memory types (volatile and

non-volatile) automatically moves the companion waveform or marker file too.

Chapter 4

157

Downloading and Using Files
ARB Waveform Data Downloads

Waveform Data Storage Path

» Volatile memory - waveform memory

I/Q waveform datais stored in the signal generator’s/ user / bbgl/ wavef or mi directory. The associated
marker and header datafiles, if provided, are stored in the/ user / bbgl/ mar ker s/ and

/ user/ bbgl/ header / directories. Thisis volatile memory and the contents will be lost when the signal
generator is turned off.

« Non-volatile memory - NVWFM memory

If the Option 005 isinstalled then I/Q datais stored in the signal generator’s/ user/ wavef or ni directory.
The associated marker datafile, if provided, isstored inthe/ user / mar ker s/ directory and the header data
fileisstored inthe/ user / header / directory. Thisisnon-volatile memory and the contents will not be lost
when the signal generator is turned off.

Data Requirements
1/Q waveform data downloads have the following requirements:

« Datamust bein signed, 2's complement format.
« Datamust bein 2-byte integers.

Two bytes are needed to express 16-bit waveforms. The signal generator accepts the most significant
byte (MSB) first.

e Input data must be between -32768 and 32767.

Thisrange is based on the input specifications of the 16-bit DAC used to create the analog voltages for
the I/Q modulator.

» Each 1/Q waveform must contain at least 60 samplesto play in the waveform sequencer (one sample
equalsone pair of 1/Q values and markers). An error message, “Fi | e format invalid”,isdisplayed
if this requirement is not met. The file format is discussed in greater detail in the following sections.

» Each 1/Q waveform must contain an even number of samplesto play in the waveform sequencer. An
error message, “Fi | e format inval i d”,isdisplayedif thisrequirement isnot met. Thefileformatis
discussed in greater detail in the following sections.

» A marker fileis aways associated with an I/Q waveform file. An empty (all zeros) default marker file
will be created if amarker fileis not provided by the user.

e The user-defined marker file and I/Q waveform data file must have the same namein the signal
generator.

158 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

File Structure and Memory

For volatile waveform memory (WFM1), there are approximately 8 megasamples (32 Msawith Option 002
and 64 Msawith Option 602) of memory allocated in 1024-byte segments. For non-volatile memory
(NVWFM), Option 005 provides approximately one gigasample of storage. Signal generators without
Option 005 provide 3 megasamples of NVWFM storage.

A waveform file must have a minimum of 60 samples of data. Each sample equals one I/Q pair of values,
represented by four bytes of data, along with markers, represented by a single byte of data. A 60 sample
waveform file will occupy 1024 bytes of waveform memory.

If awaveform fileistoo largeto fit into a 1024-byte memory segment, additional memory spaceis allocated
in multiples of 1024 bytes. For example, awaveform represented by 500 samplesis allocated to a 3072-byte
memory segment:

1 sample = 5 bytes
500 samples x 5 bytes = 2500 bytes
3 x 1024 = 3072 bytes of memory allocation
Total memory usage may be much more than the sum of the samples that make up waveform files. Many

small waveform files can use large amounts of memory.

Downloading Waveforms

Two files, awaveform datafile and the associated marker file, are downloaded into waveform memory
before being sequenced and played. The waveform data file can be loaded into the signal generator’s
waveform or NVWFM memory using the following methods:

* SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)

* SCPI over the GPIB or RS-232

» SCPI with sockets LAN (using port 5025).

» File Transfer Protocol (FTP). Refer to “Downloads Using FTP’ on page 161 for information on FTP,

Sample Command Line
A sample command line using SCPI:
SCPI command, <Arbitrary Bl ock Data>

The<Arbitrary Bl ock Data>isdefinedinthelEEE std. 488.2-1992 section 7.7.6. The following isan
example or the format as used to download waveform data to the signal generator:

: MVEM DATA "WFML: <fi | e_nanme>", #ABC

<file_name> thename of the waveform file stored in the signal generator.

Chapter 4 159

Downloading and Using Files
ARB Waveform Data Downloads

the number of decimal digitsto follow in B.
B adecimal number specifying the number of data bytesin C.

the binary waveform data.

NOTE If socketsis used to send datato the signal generator, you must provide an end-of- file
indicator. Use the following command to download waveform data:
MEM:DATA <WFM1:f i | e_name>#0<dat a> NL"END

Example 1
:MMEM:DATA "WFM1 :FILENAME", #3 240 (240 bytes of data |
S| I J
A B C

FILENAME the waveform file name as it will appear in the signal generator’s waveform memory

catalog
#3 defines the number of decimal digitsto follow in B. Thisvariable isrepresented by A in

the sample command line.
240 denotes how many bytes of data are to follow. Thisvariable is represented by B in the

sample command line.

(240 bytes of data) thebinary waveform data order for each 2-byte sample is defined as M SB
(most significant byte) first and LSB (least significant byte) last. The waveform must
have at least 60 samples of data. Each sample (1/Q data) is represented by 4 bytes, 2
bytesfor the | sample and 2 bytes for the Q sample. In the example above the data, 240
bytes, represents 60 samples of data.

Example 2

: MVEM DATA "WFML: fi | e_name", #1912S407897

file_name the waveform file name as it will appear in the signal generator’s waveform memory
catalog.

#1 defines the number of decimal digitsto follow in“B”.

9 denotes how many bytes of data are to follow.

125407897 the ASCII representation of the data that is downloaded to the signal generator. This

variableis represented by C in the sample command line.

160 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

Downloads to Waveform Memory

NOTE Before downloading files into waveform memory, turn off the ARB by pressing Mode >
Dual ARB > ARB Off On until Off is highlighted or send the SCPI command
[SOURce] : RAD o: ARB[: STATe] COFF

MVEM DATA "WFML: <fi |l e_nane>", #ABC for the waveformdata file.
MVEM DATA "MKRL: <fi | e_nane>", #ABC for the markersfile.
MVEM DATA "HDRL: <fi | e_nane>", #ABC for the header file.

The full directory path name can be specified in the command line. The following SCPI commands are
equivalent to the previous commands:

MVEM DATA "/ USER/ BBGL/ WVAVEFCRM <f i | e_name>", #ABC for the waveform datafile.
MVEM DATA "/ USER/ BBGL/ NARKERY <fi | e_nane>", #ABC for the markers file.
MVEM DATA "/ USER/ BBGL/ HEADER/ <f i | e_nanme>", #ABCfor the header file.

Downloads to NVWFM Memory:

To download filesto NVWFM (non-volatile memory) using the GPIB or the LAN interface, use the
following SCPI commands:

MVEM DATA "NWWFM <fi | e_nane>", #ABC for the waveform file.
MVEM DATA "NVMKR <fi | e_nane>", #ABC for the markersfile.
MVEM DATA "NVHDR <fi | e_nane>", #ABC for the header file.

The full directory path name can be specified in the command line. The following SCPI commands are
equivalent to the previous commands:

MVEM DATA "/ USER WVAVEFCRM <f i | e_nane>", #ABC for the waveform file.
MVEM DATA "/ USER/ MARKERS/ <fi |l e_name>", #ABC for the markers file.
MVEM DATA "/ USER/ HEADER/ <fi | e_name>", #ABC for the header file.
Downloads Using FTP

To download filesto NVWFM memory (nhon-volatile memory), using the file transfer protocol (FTP) over
the LAN interface, perform the following steps.

1. From the PC Command Prompt, or Unix command line, change the directory to the directory where the
file to be downloaded is located.

2. From the PC Command Prompt or Unix command line typef t p instrument name. Where instrument
name is the hostname for the signal generator or the signal generator’s | P address.

3. AttheUser: prompt, inthe ftp window, press the Enter key (no entry isrequired).
4. AtthePasswor d: prompt, in the ftp window, press the Enter key (no entry is required).

Chapter 4 161

Downloading and Using Files
ARB Waveform Data Downloads

5. Attheft p prompt type:
put <fil e _nane>/USER WAVEFORM <fi |l e_nane_1>

where<f i | e_nane> isthe name of thefileto download and <f i | e_name_ 1> the name designator for
the signal generator’s/ USER/ WAVEFCRM directory.

If you have a marker file associated with the data file, use the following command to download it to the
signal generator:
put <mar ker file_name>/USER MARKERY <fil e_nane_1>

where<mar ker fil e_name> isthe name of thefileto download and <f i | e_nane_1> the name
designator for the filein the signal generator’'s/ USER/ MARKERS/ directory. Marker files and the
associated 1/Q waveform file have the same name.

NOTE If no marker fileis provided, the signal generator automatically creates a default marker
file consisting of al zeros.

6. Attheft p prompt type: bye
7. At the Command Prompt type: exit

Example Programs

Waveform Generation Using C++

The following program (Met r ower ks CodeVarri or 3. 0) creates an I/Q waveform and writes the data
to afile on your PC. Once thefileis created, you can use the file transfer protocol (FTP) or one of the
waveform download programs to downl oad the waveform data to the signal generator. Refer to “ Downloads
Using FTP’ on page 161 or “Waveform Downloading Using C++” on page 164 for more information.

#i ncl ude <i ostreanp
#i ncl ude <fstreanp
#i ncl ude <math. h>

#i ncl ude <stdlib. h>

usi ng nanespace std

int min (void)
{
of stream out _stream /Il wite the I/Qdata to a file

const unsigned int SAMPLES =200; /1 nunmber of sanple pairs in the waveform

162 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

const short AMPLI TUDE = 32000; /1 anplitude between O and full scale dac val ue
const double two_pi = 6.2831853;

/lallocate buffer for waveform
short* iqData = new short[2*SAMPLES];// need two bytes for each integer
if (ligData)
{
cout << "Could not allocate data buffer." << endl;

return 1;

out _streamopen("lQdata");// create a data file
if (out_streamfail())
{
cout << "Input file opening failed" << endl;
exit(1l);
}
/'l generate the sanple data for I and Q The |I channel will have a sine

//wave and the Q channel will a cosine wave.

for (int i=0; i<SAMPLES; ++i)
{
igbata[2*i] = AMPLITUDE * sin(two_pi*i/(fl oat)SAMPLES);
iqDat a[2*i +1] = AMPLI TUDE * cos(two_pi *i/ (fl oat) SAMPLES);
}

/1l make sure bytes are in the order MSB(npbst significant byte) first. (PC only).
char* cptr = (char*)igData;// cast the integer values to characters
for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES

{
char temp = cptr[i];// swap LSB and MSB bytes

Chapter 4 163

Downloading and Using Files
ARB Waveform Data Downloads

cptri]=cptr[i+1];
cptr[i+1] =tenp;

/1 now wite the buffer to a file

out _streamwite((char*)iqgData, 4*SAVPLES)
return O

}

Waveform Downloading Using C++

The following program uses the GPIB to download a file directly to the baseband generator (volatile
memory) for play back in the Dual ARB player. The program allocates a memory buffer on the PC or
workstation of 102400 bytes (100* 1024 bytes). The actual size of the buffer islimited by the memory on
your PC or workstation, so the buffer size can be increased or decreased to meet your system limitations.

While this program is directed at using the GPIB to download a waveform file into volatile memory, it can
be modified to store filesin non-volatile memory or for use over the LAN with the following minor changes:

LAN Replace the GPIB assignment for the instOpenString object with “lan[<hosthame or IP
address>]" for the signal generator.

Non-volatile Memory Remove BBG1 from the file path assigned to the instDestFile object.

The program also includes some error checking to alert you when problems arise while trying to download
files. Thisincludes checking to seeif the file exists.

/1 Description: Send a file in blocks of data to an ESG
/1

#i ncl ude <sicl.h>

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

/1 ATTENTI ON
/1 - Configure these three lines appropriately for your instrunment

11 and use before conpiling and running
11

char* instQpenString = "gpib7,19"; //for LAN replace with “lan[<hostnanme or |P address>]"

164 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

const char* local SrcFile = "D:\\home\\ TEST_WAVE"; //enter file location on PC/workstation

const char* instDestFile = "/USER BBGL/ WAVEFORM TEST_WAVE"; //for non-volatile nenory
/lrenpve BBGL fromfile path

/1 Size of the copy buffer
const int BUFFER_SI ZE = 100*1024;

int

mai n()

{
I NST i d=i open(i nst OpenString);
if (lid)
{

fprintf(stderr, "iopen failed (%)\n", instOpenString);

return -1;

FILE* file = fopen(local SrcFile, "rb");

if (Mfile)

{
fprintf(stderr, "Could not open file: %\n", local SrcFile);
return O;

}

if(fseek(file, 0, SEEK END) < 0)

fprintf(stderr,"Cannot seek to the end of file.\n");

return O;

long I enToSend = ftell (file);
printf("File size = %\ n", |enToSend);

Chapter 4 165

Downloading and Using Files
ARB Waveform Data Downloads

if (fseek(file, 0, SEEK SET) < 0)
{
fprintf(stderr,"Cannot seek to the start of file.\n");

return O;

char* buf = new char[BUFFER _SI ZE] ;
if (buf && | enToSend)
{
/'l Prepare and send the SCPI command header
char s[20];
sprintf(s, "%l", |enToSend);
int lenLen = strlen(s);
char s2[256];
sprintf(s2, "memdata \"%\", #%%l", instDestFile, |lenLen, |enToSend);

iwite(id, s2, strlen(s2), 0, 0);

/1 Send file in BUFFER_SI ZE chunks

| ong nunRead;

do

{
nunmRead = fread(buf, sizeof(char), BUFFER_SIZE, file);
iwite(id, buf, nunRead, 0, 0);

} while (nunRead == BUFFER_SI ZE) ;

/1 Send the terminating newine and EOM
iwite(id, "\n", 1, 1, 0);

del ete [] buf;

el se

166 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

fprintf(stderr, "Could not allocate nenory for copy buffer\n");

fclose(file);
iclose(id);
return O;

}

Waveform Downloading Using HP BASIC for Windows[

The following program will download awaveform using HP BASIC for Windows[into volatile ARB
memory. The waveform generated by this program is the same as the default S| NE_ TEST WrMwaveform
fileavailablein the signal generator’s waveform memory. This code is similar to the code shown for BASIC
for UNIX but there is aformatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 80 with:
210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

Asdiscussed at the beginning of this section, | and Q waveform datais interleaved into onefilein 2's
compliment form and a marker file is associated with this I/Q waveform file.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“ K’ instructs HP BASIC to output the following numbers or stringsin the default format.

10 ! RE-SAVE "BASIC Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | nt _array(1: Num poi nt s*2)

40 DEG

50 FOR 1 =1 TO Num poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(I*360/ Num_ points)))
70 NEXT |

80 FOR | =2 TO Num poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num points)))
100 NEXT |

110 PRI NT "Data Cener at ed"

120 Nbyt es=4* Num _poi nt s

130 ASSI GN @sg TO 719

Chapter 4 167

Downloading and Using Files
ARB Waveform Data Downloads

140 ASSI GN @sgb TO 719; FORVMAT MsSB FI RST

150 Nbyt es$=VAL$(Nbyt es)

160 Ndi gi t s=LEN(Nbyt es$)

170 Ndi gi t s$=VAL$(Ndi gi t s)

180 VAIT 1

190 QUTPUT @sg USI NG "#, K'; " MVEM DATA ""WFML: data_file"", #"
200 QUTPUT @sg USI NG "#, K'; Ndi gi t s$

210 QUTPUT @sg USI NG "#, K'; Nbyt es$

220 WAIT 1

230 OQUTPUT @sgb; I nt _array(*)

240 OQUTPUT @sg; END

250 ASSIGN @sg TO *

260 ASSI GN @sgb TO *

270 PRI NT

280 PRI NT "*END*"

290 END

168 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

Program Comments

10: Program file name

20: Sets the number of pointsin the waveform.

30: Allocates integer data array for | and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for | waveform points.

60: Calculate and interleave | waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytesin I/Q waveform.

130: Opens an I/0 path to the signal generator using GPIB. 7 isthe address of the GPIB card
in the computer, and 19 is the address of the signal generator. This I/O path is used to
send ASCII datato the signal generator.

140: Opens an 1/0 path for sending binary data to the signal generator.

150: Creates an ASCI|I string representation of the number of bytesin the waveform.

160 to 170: Finds the number of digitsin Nbytes.

190: Sendsthe first part of the SCPI command, MEM:DATA along with the name of thefile,
data_fil e, that will receivethe waveform data. Thename, dat a_fi | e, will appear
in the signal generator’s memory catalog.

200t0210: | Sendsthe rest of the ASCII header.

230: Sends the binary data. Note that ESGb isthe binary 1/0 path.

240: Sends an End-of-Line to terminate the transmission.

250t0260: | Closesthe connectionsto the signal generator.

290: End the program.

Chapter 4

169

Downloading and Using Files
ARB Waveform Data Downloads

Waveform Downloading Using HP BASIC for UNIX

The following program shows you how to download waveforms using HP BASIC for UNIX. The code is
similar to that shown for HP BASIC for Windows but there is aformatting difference in line 45 and line 50.

Asdiscussed at the beginning of this section, | and Q waveform datais interleaved into onefilein 2's

compliment form and a marker file is associated with this I/Q waveform file.

Inthe Qut put commands, USI NG “#, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“K” instructs HP BASIC to output the following numbers or strings in the default format.

10 !' RE-SAVE "UNI X_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER I nt _array(1: Num poi nts*2)

40 DEG

50 FOR I =1 TO Num poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(I*360/ Num_poi nts)))
70 NEXT |

80 FOR | =2 TO Num poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num_poi nts)))
100 NEXT |

110 PRI NT "Data generated "

120 Nbyt es=4* Num_poi nt s

130 ASSI GN @sg TO 719; FORVAT ON

140 ASSI GN @sgb TO 719; FORMAT OFF

150 Nbyt es$=VAL$(Nbyt es)

160 Ndi gi t SSLEN(Nbyt es$)

170 Ndi gi t s$=VAL$(Ndi gi t s)

180 WAIT 1

190 QUTPUT @sg USI NG "#, K'; " MVEM DATA ""WFML: data_file""
200 QUTPUT @sg USI NG "#, K'; Ndi gi t s$

210 OUTPUT @Esg USI NG "#, K"; Noyt es$

220 WAIT 1

230 OQUTPUT @sgb; I nt _array(*)

240 VAIT 2

170 Chapter 4

241
250
260
270
280
290

OUTPUT @sg; END
ASSI GN @sg TO *
ASSI GN @sgb TO *
PRI NT

PRI NT "*END*"
END

Downloading and Using Files
ARB Waveform Data Downloads

Chapter 4

171

Downloading and Using Files
ARB Waveform Data Downloads

Program Comments

10: Program file name

20: Sets the number of pointsin the waveform.

30: Allocates integer data array for | and Q waveform points.
40: Sets HP BASIC to use degrees for cosine and sine functions.
50: Sets up first loop for | waveform points.

60: Calculate and interleave | waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytesin I/Q waveform.

130: Opens an I/0 path to the signal generator using GPIB. 7 is the address of the GPIB card

in the computer, and 19 is the address of the signal generator. This I/O path is used to
send ASCII datato the signal generator.

140: Opens an /O path for sending binary data to the signal generator.

150: Creates an ASCI|I string representation of the number of bytesin the waveform.

160 to 170: Finds the number of digitsin Nbytes.

190: Sendsthe first part of the SCPI command, MEM:DATA along with the name of thefile,
data_fil e,that will receivethe waveform data. Thename, dat a_fi | e, will appear
in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that ESGb isthe binary 1/0 path.

240: Sends an End-of-Line to terminate the transmission.

250t0260: | Closesthe connections to the signal generator.

290: End the program.

172 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

Playing a Downloaded Waveform

The following procedure shows you how to load and play a downloaded waveform file, using front panel
key presses and remote commands.

1. Select the downloaded waveform file in non-volatile waveform memory (NVWFM) and load it into
volatile waveform memory (WFM1). Thefile consists of both I/Q and marker file data, and requires a
SCPI command to load remotely.

Viathe front panel:

a. Press Mode > Dual ARB > Select Waveform > Waveform Segments > Load Store until Load is highlighted.
b. Highlight the waveform filein the NVWFM catalog using the arrow keys or front panel knob.

C. PressLoad Segment From NVWFM Memory. If the waveform is not highlighted, use the cursor to
highlight the waveform.

Viathe remote interface, send any one of the following SCPI commands:

: MEMDry: CCPY[NAME] " <NWAFM fi | e_name>", " <WFML: fi | e_name>"
: MEMDry: CCPY[NAME] "<NVMKR: fi | e_name>", "<MKRL: fi | e_name>"
: MEMDry: CCPY[NAME] "<NVHDR: fi | e_name>", "<HDRL: fi | e_name>"

NOTE When copying awaveform, marker or header file from volatile and non-volatile memory,
the waveform and the associated marker and header files are copied. Conversely, when a
waveform file is deleted, the associated marker and header files are deleted. It is not
necessary to send a separate command to copy or delete the marker and header files.

2. Select the downloaded waveform filein volatile waveform memory for playback.
Viathe front panel:
a PressReturn > Select Waveform.
b. Highlight selection.
C. PressSelect Waveform.

To select a segment via the remote interface, send the following SCPI command:

[SOQURce}: RAD 0: ARB: WAVef or m "WFML:<f i | e_nane>"

Chapter 4 173

Downloading and Using Files
ARB Waveform Data Downloads

3. Play the waveform and use it to modulate the RF carrier.

Viathe front panel:

a. Press ARB 0ff On until On is highlighted.
b. PressMod On/0ff until the MOD ON annunciator appears on the display.
c. PressRF 0n/0ff until the RF On annunciator appears on the display.

Viathe remote interface, send the following SCPI commands:

[: SOURce] : RAD 0: ARB[: STATe] ON
: QUTPut : MCDul ati on[: STATe] ON
: QUTPut [: STATe] ON

Downloading E443xB Signal Generator Files

Download the E443xB type files to the signal generator exactly asif downloading files to a E443xB signal
generator.

Downloaded E443xB waveform type files will automatically be converted to the new file format, as
described on page 156, and stored into the signal generator’s memory.

The file conversion process takes more time than downloading files that are already in the new file format.
Store E443xB file downloads to waveform memory and then transfer them over to NVWFM memory to
avoid the time required to convert these file types.

E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. Thisfile structure can be
compared with the new style file format shown in Table 4-1 on page 157. If new waveform files are created
for the signal generator, use the new style format.

ARB Data Format
E443xB ARB Data Format

Marker Data

Volatile Memory Path
14 bits DAC Data

| File MSB Offset Binary LSB
ARBI /waveform name | 2 I 14 I
Q File
ARBQ /waveform name | 2 | 14 |
14 bits DAC Data
SNl Offset Binary

arb datc

174 Chapter 4

Downloading and Using Files
ARB Waveform Data Downloads

Storage Locations for ARB files

Waveforms can be stored to either volatile waveform memory or the non-volatile NVARB memory. The
signal generator supports the E443xB directory structure for waveform file storage.

» For the E443xB style 14-bit waveforms the following storage locations are used:

1. For non-volatile, NVARB memory, the directory locationsare/ user / nvar bi / and
[user/ nvar bq.

2. For volatile waveform memory the directory locationsare / user/arbi/ and /user/arbq/.

Loading filesinto the above directories does not actually store them in those directories. Instead, these
directories function as “pipes’ to the format trans ator. The E443xB files are translated into 16-hit versions
(by appending 0’'sto the least significant bit (L SB) and interleaving the data) and stored in the regular
waveform directories along with other new style waveform files.

Although the you can see the E443xB file namesin the/ ar bi , / ar bq and nvar bi /nvar bq directories,
these names arereally pointers. Refer to “ Types of Arbitrary Waveform Generator Memory” on page 157 for
more information on the new style directory structure.

SCPI Commands

The signal generator automatically generates a marker file for downloaded E443xB waveform files. The
following commands will download E443xB waveform files into the signal generator.

Downloads to Waveform Memory:

Before downloading into volatile memory, turn off the ARB by pressing Mode > Dual ARB > ARB Off On until
Off is highlighted or send the SCPI command [: SOURce] : RAD o: ARB[: STATe] CFF.

: MVEM DATA "ARBI : <fil e_name>", <l waveform data>
: MVEM DATA "ARBQ <fil e_name>", <Q waveform dat a>

These commands download E443xB 1/Q waveform data into the signal generator’s waveform memory. The
<l wavef or m dat a> and <Q wavef or m dat a> isthefile format as described above. The string variable
<fi | e_nane> isthe name of the waveform datafile. The signal generator will associate a marker file with
the datafile.

Downloads to Non-Volatile Memory:

: MVEM DATA "NVARBI : <fil e_name>", <l waveform dat a>
: MVEM DATA "NVARBQ <fil e_name>", <Q waveform dat a>

These commands download E443xB 1/Q waveform datainto the signal generator’s non-volatile memory.
The string variable <f i | e_name> isthe name of the datafile. The signal generator will associate a marker
file with the data file when the file is moved to waveform memory prior to playing.

Chapter 4 175

Downloading and Using Files
ARB Waveform Data Downloads

Example Programs

Waveform Downloading Using HP BASIC for Windows[

The following program shows you how to download waveforms using HP BASIC for Windows[into
volatile ARB memory. This program is similar to the following program example as well as the previous
examples. The difference between BASIC for UNIX and BASIC for Windows isthe way the formatting, for
the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 80 with:

80 OUTPUT @ESG USING "#K";":MMEM:DATA ""NVARBI:testfile"", #'
and replace line 130 with:

130 OUTPUT @ESG USING "#K";":MMEM:DATA ""NVARBQ:testfile"", #"

First, the | waveform datais put into an array of integers called | wWf m dat a and the Q waveform datais put
into an array of integers called Qwfm_data. The variable Noyt es is set to equal the number of bytesin the
waveform data. This should be twice the number of integersin | wf m dat a, since an integer is 2 bytes.
Input integers must be between 0 and 16383.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“ K’ instructs HP BASIC to output the following numbers or stringsin the default format.

10 | RE-SAVE "ARB_IQ Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num_poi nts), Quf m dat a(1: Num poi nt s)
40 DEG

50 FOR I =1 TO Num poi nts

60 I'wf m dat a(1) =1 NT(8191*(SI N(I *360/ Num_poi nt s)) +8192)
70 Qwf m dat a(1) = NT(8191* (COS(| * 360/ Num _poi nt s)) +8192)
80 NEXT |

90 PRI NT "Data Cener at ed"

100 Nbyt es=2* Num_poi nt s

110 ASSI GN @sg TO 719

120 I ASSI GN @sgb TO 719; FORVAT MSB FI RST
130 Nbyt es$=VAL$(Nbyt es)

140 Ndi gi t SSLEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndi gi t s)

176 Chapter 4

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

QUTPUT
QUTPUT
OQUTPUT
QUTPUT
QUTPUT
OQUTPUT
QUTPUT
QUTPUT
OQUTPUT
QUTPUT
ASS| GN
ASSI GN
PRI NT
PRI NT "
END

Downloading and Using Files
ARB Waveform Data Downloads

@sg USI NG "#, K"; " MVEM DATA ""ARBI : file_nane_1"", #"

@sg USING "#, K'; Ndi gi t s$
@sg USI NG "#, K"; Nbyt es$
@Esgb; | wf m data(*)

@Fsg; END

@sg USING "#, K';": MVEM DATA ""ARBQ fil e_nane_1"", #"

@sg USING "#, K'; Ndi gi t s$
@sg USING "#, K'; Noyt es$
@sgb; Quvf m dat a(*)

@Fsg; END

@sg TO *

@sgb TO *

END"

Program Comments

10: Program file name.

20 Sets the number of pointsin the waveform.

30: Defines arrays for | and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates | waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The |l and Q waveform files have the same name

90 to 300: See the table on page 169 for program comments.

Chapter 4

177

Downloading and Using Files
ARB Waveform Data Downloads

Waveform Downloading Using HP BASIC for UNIX

The following program shows you how to download waveforms using HP BASIC for UNIX. It issimilar to
the previous program example. The difference is the way the formatting for the most significant bit (M SB)
on linesis handled.

First, the | waveform datais put into an array of integerscalled | wf m dat a and the Q waveform datais put
into an array of integers called Quf m dat a. The variable Nbyt es is set to equal the number of bytesin the
| waveform data. This should be twice the number of integersin | wf m dat a, since an integer is represented
2 bytes. Input integers must be between 0 and 16383.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“K” instructs HP BASIC to output the following numbers or strings in the default format.

10 ! RE-SAVE "ARB 1 Q file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num_poi nts), Qv m dat a(1: Num poi nt s)
40 DEG

50 FOR I =1 TO Num poi nts

60 I'wf m data(l)=INT(8191*(SI N(I*360/ Num poi nts))+8192)

70 Qa m dat a(1) =1 NT(8191* (COS(| *360/ Num _poi nt s)) +8192)

80 NEXT |

90 PRI NT "Data Cener at ed"

100 Nbyt es=2* Num _poi nt's

110 ASSI GN @sg TO 719; FORVAT ON

120 ASSI GN @sgb TO 719; FORVAT OFF

130 Nbyt es$=VAL$(Nbyt es)

140 Ndi gi t SSLEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndi gi t s)

160 QUTPUT @sg USI NG "#, K'; "MVEM DATA ""ARBI: file_name_1"", #"
170 QUTPUT @sg USI NG "#, K'; Ndi gi t s$

180 OUTPUT @Esg USI NG "#, K"; Noyt es$

190 QUTPUT @Esgb; | wf m dat a(*)

200 OQUTPUT @sg; END

210 QUTPUT @sg USI NG "#, K';": MVEM DATA ""ARBQ fil e_nane_1"",6 #"
220 OUTPUT @Esg USI NG "#, K'; Ndi gi ts$

178 Chapter 4

230
240
250
260
270
280
290
300

Downloading and Using Files
ARB Waveform Data Downloads

OQUTPUT @sg USI NG "#, K'; Nbyt es$
OQUTPUT @sgb; QM m dat a(*)
QUTPUT @Esg; END

ASSI GN @sg TO *

ASSI GN @sgb TO *

PRI NT

PRI NT "*END*"

END

Program Comments

10: Program file name.

20 Sets the number of pointsin the waveform.

30: Defines arrays for | and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates | waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: Thel and Q waveform files have the same name

90 to 300 See the table on page 172 for program comments.

Chapter 4 179

Downloading and Using Files
Understanding ARB Waveform File Composition and Encryption

Understanding ARB Waveform File Composition and Encryption

When you generate awaveform from an ARB personality option (including Signal Studio), awaveform file
isautomatically created and stored in volatile memory, along with providing you the option of renaming
and/or moving it to non-volatile memory for safe storage. The waveform file is comprised of header
information, waveform data, and marker data. The header information contains ESG ARB settings so that, if
the header is saved, the waveform can be identically reproduced. The ARB settings default to unspecified
unless you save the header information. In either case, header information always accompanies the
waveform data. (Refer to the User’s Guide for more information on headers.)

Additionally, these waveform files can be extracted from the ESG in encrypted form for use in other ESGs

having the same option. You can also extract encrypted files created with applications such as MATLAB®,
providing the data was downloaded to the ESG using the method described in the section below. Files
cannot be extracted from the ESG in unencrypted form. Furthermore, files created with prior ESG firmware

revisions cannot be extracted in any form.

Downloading waveform data to the ESG for extraction as an encrypted waveform file

If you are using waveform data created in MATLAB or another similar application and are using SCPI to
download the datato the ESG, you must use the MM EM :DATA:UNPRotected command. Downloading data
with this command allows it to be extracted from the ESG's SECUREWAVE directory as an encrypted file
(refer to “Extracting waveform files from the ESG for use in other ESGS’ on page 181). If you use FTP, no
special command syntax is necessary. Table 4-2 shows the command syntax options for both methods.

Table 4-2

Download Method/ Command Syntax Options

Memory Type

SCPI/ MMEM:DATA:UNPRotected "/user/bbgl/waveform/filename",<blockdata>

volatile memory MMEM:DATA:UNPRotected "WFM 1:filename" ,<blockdata>
MMEM:DATA:UNPRotected "filename@WFM 1"

SCPI/ MMEM:DATA:UNPRotected "/user/waveform/filename”,<blockdata>

non-volatile memory | MMEM:DATA:UNPRotected "NVWFM:filename" ,<blockdata>
MMEM:DATA:UNPRotected "filename@NVWFM"

FTP/ put filename /user/bbgl/waveform/newfilename
volatile memory

MATLAB is a U.S. registered trademark of The Math Works, Inc.

180 Chapter 4

Downloading and Using Files
Understanding ARB Waveform File Composition and Encryption

Table 4-2

Download Method/ Command Syntax Options
Memory Type

FTPR/ put filename /user/waveform/newfilename
non-volatile memory

Extracting waveform files from the ESG for use in other ESGs

Waveform files can only be extracted from the SECUREWAVE directory. The SECUREWAVE directory is
not an actual directory, but behaves more like aportal through which waveform datais packaged with header
and marker data, and encrypted during file extraction. You can use either FTP or SCPI commands to extract
the waveform file from the ESG to your computer. Table 4-3 shows the command syntax options for both
methods.

Table 4-3

Extraction Method/ Command Syntax Options

Memory Type

SCPI/ MMEM:DATA? "/user/bbgl/securewave/filename"

volatile memory MMEM:DATA?"SWFM1:filename"
MMEM:DATA? "filename@SWFM 1"

SCPI/ MMEM :DATA? "/user/securewave/filename"

non-volatile memory | MMEM:DATA?"SNVWFM:filename"
MMEM:DATA? "filename@SNVWFM"

FTPR/ get /user/bbgl/securewavelfilename
volatile memory

FTP/ get /user/securewave/filename
non-volatile memory

Chapter 4 181

Downloading and Using Files
Understanding ARB Waveform File Composition and Encryption

Downloading encrypted waveform files to the ESG

To download an encrypted file to the ESG, you must ensure that the file is loaded into the ESG's
SECUREWAVE directory, where the file is decrypted and unpackaged into its header information,
waveform data, and marker data. You can use either FTP or SCPI commands to download encrypted
waveform files to the ESG. Table 4-4 shows the command syntax options for both methods.

Table 4-4
Download Method/ Command Syntax Options
Memory Type
SCPI/ MMEM :DATA "/user/bbgl/securewave/filename”,<blockdata>

volatile memory

MMEM:DATA "SWFM1:filename",<blockdata>
MMEM:DATA "filenane@SWFM1"

SCPI/
non-volatile memory

MMEM:DATA "/user/securewavel/filename" ,<blockdata>
MMEM:DATA "SNVWFM :filename',<blockdata>
MMEM:DATA "filename@SNVWFM"

FTP/
volatile memory

put filename /user/bbgl/securewave/newfilename

FTP/
non-volatile memory

put filename /user/securewave/newfilename

182

Chapter 4

Downloading and Using Files
User Bit/Binary File Data Downloads

User Bit/Binary File Data Downloads

The signal generator accepts user file data downloads. The files can bein either binary or bit format, each
consisting of 8-bit bytes. Both file types are stored in the signal generator’s non-volatile memory.

» Inbinary format the dataisin multiples of 8 bits; all 8 bits of a byte are taken as data and used.
* Inbit format the number of bitsin the file is known and the non-data bits in the last byte are discarded.

After downloading the files, they can be selected as the transmitting data source. This section contains
information on transferring user file datafrom a PC to the signal generator. It explains how to download user
filesinto the signal generator’s memory and modul ate the carrier signal with those files.

Framed and Unframed Data Types
There are two modes that can be used: framed mode and pattern mode.

* Inframed mode, user file dataisinserted into the data fields of an existing or user-defined, custom
framed digital modulation format, such as DECT, PHS, or TETRA.

The signal generator’s firmware generates the required framing structure and inserts user file datainto
the data field(s) of the selected format. For more information, see“ User Files as Data Source for Framed
Transmission” on page 185.

NOTE Unlike pattern RAM (PRAM) downloads to memory, user files contain “data field”
information only. The control data bits required for files downloaded directly into
PRAM are not required for user file data.

» |In pattern mode, the file is modul ated as a continuous, unframed stream of data, according to the
modulation type, symbol rate, and filtering associated with the selected format.

When a user file is selected as the data source, the signal generator’s firmware loads each data bit into
waveform memory, and sets 31 additional control bits depending upon the operating mode, regardless of
whether framed or unframed transmission is selected. In this manner, user files are mapped into
waveform memory bit-by-bit; where each bit is represented by a 32-bit word.

If the bit rate exceeds 50 Mbps, the user data is written to memory one symbol per 32-bit word, rather
than one bit per 32-bit word. Thisis generally referred to as parallel mode.

Chapter 4 183

Downloading and Using Files
User Bit/Binary File Data Downloads

Bit Memory and Binary Memory

User files can be downloaded to the bit memory or binary memory. Bit memory accepts data in integer
number of bits, up to the maximum available memory. The datalength in bytes for files downloaded into bit
memory is equal to the number of significant bits plus 7, divided by 8, then rounded down to the nearest
integer plus 8 bytes for the file header. You must have enough bytes to contain the bits you specify. If the
number of bitsis not amultiple of 8, the least significant bits of the last byte will be ignored.

Bit memory provides more versatility and is the preferred memory for user file downloads.

Binary memory requires data formatted in 8-bit bytes. Files stored or downloaded to binary memory are
converted to bit files prior to editing in the bit file editor. Afterward, these modified files from binary
memory are stored in bit memory as bit files.

Data Requirements

1. Datamust bein binary format.

SCPI specifies the datain 8-bit bytes.

NOTE Not all binary values are ASCII characters that can be printed. In fact, only ASCII

characters corresponding to decimal values 32 through 126 are printable keyboard
characters. Typicaly, the ASCII character corresponding to an 8-bit pattern is not
printable.

Because of this, the program written to download and upload user files must correctly
convert the binary datainto 8-bit ASCII characters.

Bit length must be amultiple of the data-field length of the active format.

Also, the bit length of a user file must be a multiple of the data-field length of the active format in order
to completely fill the frame's data field without leaving a remainder.

Remaining datais truncated by the signal generator’s firmware and is therefore not present in the
resulting waveform at the RF output.

3. Bit length must be a multiple of 8 (binary downloads only).

SCPI specifies datain 8-bit bytes, and the binary memory stores data in 8-bit bytes.
If the length (in bits) of the original data pattern is not a multiple of 8, you may need to:

add additional bitsto complete the ASCII character,
replicate the data pattern without discontinuity until the total length is a multiple of 8 bits,
truncate and discard bits until you reach a string length that is a multiple of 8, or

use abit file and download to bit memory instead.

184

Chapter 4

Downloading and Using Files
User Bit/Binary File Data Downloads

Data Limitations

Maximum selectable file sizes are directly proportional to the available memory space and the signal
generator’s pattern RAM size. For example, Option 001/601 can accommodate up to 1 megabyte of source
data (Option 002 = 4 MB, Option 602 = 8 MB). To determine the maximum user file size, you must consider
the following:

» framing overhead

» pattern RAM storage size (Option 001/601 = 8 megawords, Option 002 = 32 megawords, or Option 602
= 64 megawords)

» available memory

You may have to delete files from memory before downloading larger files.

Data Volatility

The signal generator provides two data storage areas: volatile waveform memory (WFM 1) and non-volatile
memory (NVWFM). Data stored in volatile waveform memory cannot be recovered if it is overwritten or if
the power is cycled. Data stored in non-volatile memory, however, remains until you delete thefile. The
Option 005 signal generator’s hard disk provides one gigasample of non-volatile storage. Signal generators
without Option 005 provide 3 megasamples of non-volatile storage.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

User Files as Data Source for Framed Transmission

Specifying a user file as the data source for a framed transmission provides you with an easy method to
multiplex real datainto internally generated TDMA framing. The user file will fill the data fields of the
active timeslot in the first frame, and continue to fill the same timeslot of successive frames aslong asthere
ismore datain the file. This functionality allows a communications system designer to download and
modulate proprietary data sequences, specific PN sequences, or simulate multiframe transmission, such as
those specified by some mobile communications protocols. As the examplein the following figure shows, a
GSM multiframe transmission requires 26 frames for speech.

Chapter 4 185

Downloading and Using Files
User Bit/Binary File Data Downloads

Figure 4-1 GSM Multiframe Transmission

SuperFrame = 51 MultiFrames = MHMW ‘ ‘ ‘ ‘ | ‘ | ‘ W Mmm
1,657,500 bits =6.12 s
Speech MultiFrame (TCH) = B
26 Frames = 32,500 bits = 120 ms T J:

Frame = 8 Timeslots = [— T
| TS7
1250 bits = 4.615 ms | TSO| TSt | TS2 | TS3 | Tsa | TS5 |TS6 | TS j

Normal GSM Timeslot = ‘ 3 57 1 26 1 57 3| 825
156.25 bits = 576.92 us
Tail Data Control Control Data Tail Guard
Bits Field #1 Bit Bit Field #2 Bits Period
Midamble

When auser file is selected as the data source for aframed transmission, the signal generator’s firmware
loads PRAM with the framing protocol of the active TDMA format. For all addresses corresponding to
active (on) timeslots, burst bits are set to 1 and data bits are set with the contents of the user file for the data
fields of the timedot. Other bits are set according to the configuration selected. For inactive (off) timeslots,
burst control bits are set to 0, and datais “ unspecified.” Pattern reset is set to 1 for the last byte in PRAM,
causing the pattern to repeat after the last byte isread.

NOTE The datain PRAM is static. Firmware writesto PRAM once for the configuration selected
and the hardware reads this data repeatedly. Firmware overwrites the volatile PRAM
memory to reflect the desired configuration only when the data source or mode (digital
communications format) is changed.

Take for example, transmitting a 228-bit user file for timeslot #1 (TS1) in anormal GSM transmission. Per
the standard, a GSM normal channel is 156.25-bits long, with two 57-bit data fields (114 bits total per
timeslot), and 42 bits for control or signalling purposes.

NOTE Compliant with the GSM standard, which specifies 156.25-bit timeslots, the signal
generator uses 156-bit timeslots and adds an extra guard bit every fourth timeslot.

186 Chapter 4

Downloading and Using Files
User Bit/Binary File Data Downloads

The 7 remaining timeslotsin the GSM frame are off. The user file will completely fill timeslot #1 in two
consecutive frames, and will then repeat. See Figure 4-2.

Figure 4-2 Mapping User File Data to a Single Timeslot

228 bit User File | 114bits | 114bits |

Amplitude

TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 |[TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7 (TSSO TS1 TS2
Frame 1 Frame 2 Frame 1 Time

—>

For this protocol configuration, the signal generator’s firmware loads PRAM with the bits defined in the
following table.

Frame Timeslot PRAM Word Data Bits Burst Bits Pattern
Offset Reset Bit

1 0 0-155 0/1 (don’t care) 0 (off) 0 (off)

1 1 (on) 156 - 311 set by GSM standard (42 bits) & 1 (on) 0
first 114 bits of user file

1 2 312 - 467 0/1 (don’t care) 0 0

1 3 468 - 624 0/1 (don’t care) 0 0

1 4 625 - 780 0/1 (don’t care) 0 0

1 5 781 - 936 0/1 (don’t care) 0 0

1 6 937 - 1092 0/1 (don’t care) 0 0

1 7 1093 - 1249 0/1 (don’t care) 0 0

2 0 1250 - 1405 0/1 (don’t care) 0 0

2 1 (on) 1406 - 1561 set by GSM standard (42 bits) & 1 (on) 0
remaining bits of user file

2 2through6 | 1562 - 2342 0/1 (don’t care) 0 0 (off)

Chapter 4 187

Downloading and Using Files
User Bit/Binary File Data Downloads

Frame Timeslot PRAM Word Data Bits Burst Bits Pattern
Offset Reset Bit
2 7 2343 - 2499 0/1 (don’t care) 0 0
(1in offset
2499 only)

Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the Event 1 output at either
the beginning of the frame, beginning of a specific timeslot, or at al timeslots.

Because timeslots are configured and enabled within the signal generator, a user file can be individually
assigned to one or more timeslots. A timeslot cannot have more than one data source (PN sequence or user
file) specified for it. The amount of user file data that can be mapped into hardware memory depends on
both the amount of PRAM available on the baseband generator, and the number and size of each frame. The
amount of PRAM required for aframed transmission is calculated as follows:

PRAM storage required (measured in 32-bit words) =
size of normal GSM timeslot x timeslots per frame x speech multiframe(TCH) x superframe

size of normal GSM timeslot = 156.25 bits
timeslots per frame = 8 timedlots.

speech multiframe(TCH) = 26 frames
superframe = 51 speech multiframes

For example, to calculate the number of bytes to generate a superframe for GSM:
=156.25 x 8 x 26 x 51
=1,657,5000 32-bit words = 6,630,000 bytes.

Multiple User Files Selected as Data Sources for Different Timeslots

If two or more user files are selected for aframed transmission, the amount of PRAM required is determined
by the user file that generates the largest number of frames. In order to generate continuously repeating data
patterns, each user file must be long enough to completely fill an integer number of timeslots. In addition, all
user files must meet the “multiple of 8 bits” and “enough PRAM memory” requirements to be correctly
modul ated.

For example, user file #1 contains 114 bits and fills the data fields of a normal GSM timeslot, and user file
#2 contains 148 bits for a custom GSM timeslot. In order to correctly transmit these data patterns as
continuously repeating user files without discontinuities, both data patterns must be repeated four times.
Therefore, user file #1 contains 456 bits, and user file 2 contains 592 hits. Each user file will then create
exactly four framesin pattern RAM.

188 Chapter 4

Downloading and Using Files
User Bit/Binary File Data Downloads

When two or more user files generate different numbers of complete frames, the user files will repeat on
different cycles. All user fileswill restart when the user file that generates the largest number of frames
repeats. For example, user file #1 needs four frames to completely transmit its data, and user file #2 needs
only three. User file #2 will repeat after the third frame, and again when user file #1 repeats. See Figure 4-3.
If these were integer multiples of each other, both user files would be continuous, and user file #2 would
repeat after two frames.

Figure 4-3 Repeating Different Length User Files

User File #1 User File #1

//—' Re-starts Re-starts

Frame #1 | Frame #2 | Frame #3| Frame #4|Frame #1 | Frame #2 | Frame #3| Frame #4| Frame #1

Frame #1 | Frame #2 | Frame #3 | Frame #1 | Frame #1 | Frame #2 | Frame #3 | Frame #1 | Frame #1

User File #2 User File #2
Re-starts Re-starts
User File #2 User File #2
Re-starts Re-starts

Downloading User File Data

This section includes information that explains how to download user file data. It includes data requirements
and limitations, preliminary setup, SCPI commands and sample command lines for both downloads to bit
memory and binary memory.

Data Requirements and Limitations Summary

1. Datamust be binary.

2. Bit length must be a multiple of the data-field length of the active TDMA format.
3. User filesizeislimited by the available memory.
4

. When designing user files, you must consider the signal generator’s PRAM storage size
(Option 001/601 = 8 megawords, Option 002 = 32 megawords, or Option 602 = 64 megawords), framing
overhead, and available memory.

Chapter 4 189

Downloading and Using Files
User Bit/Binary File Data Downloads

5. For downloads to binary memory, bit length must be a multiple of 8; SCPI specifies the datain 8-bit
bytes.

NOTE Not al binary values are ASCII characters that can be printed. Only ASCII characters
corresponding to decimal values 32 through 126 are printable keyboard characters.
Typically, the ASCII character corresponding to an 8-bit pattern is not printable.

Because of this, the program written to download and upload user files must correctly
convert the binary datainto 8-bit characters.

Preliminary Setup

No preliminary setup isrequired for user file downloads.

Bit Memory Downloads

Bit memory accepts datain any integer number of bits, up to the maximum available memory. The data
length in bytes for files downloaded to bit memory is equal to the number of significant bits plus 7, divided
by 8, then rounded down to the nearest integer plus 8 bytesfor the file header. Each file has a 16-byte header
associated with it.

You must have enough bytes to contain the bits you specify. If the number of bitsis not a multiple of 8, the
least significant bits of the last byte will be ignored.

For example, specifying 14 bits of a 16-bit string using the command : MEMbry: DATA: BI T
"file_name", 14, #12Qx resultsinthelast 2 bits being ignored. See the following figure.

1010 0001 0111 1010 original user-defined data contains 2 bytes, 16 bits total
SCPI command sets bit count to 14; the last 2 bits areignored
1010 0001 0111 10@

Bit memory provides more versatility and is preferred for user file downloads.

SCPI Commands
Send the following command to download the user file datainto the signal generator’s bit memory.
:MEMory:DATA:BIT "<file_name>", <hit count>, <datablock>

190 Chapter 4

Downloading and Using Files
User Bit/Binary File Data Downloads

Example
:MEMOry: DATABIT “file_name", 16, #12Q

file_name provides the user file name as it will appear in the signal generator’s binary memory
catalog

#1 defines the number of decimal digitsto follow in “B”

2 denotes how many bytes of data are to follow

04 the ASCII representation of the 16 bits of data that are downloaded to the signal

generator. Thisvariableis represented by “C” in the sample command line

Querying the Waveform Data
Use the following SCPI command to query user file data from binary memory:
: MEMDry: DATA: BI T? "<fil e_name>"

The output format is the same as the input format.

Binary Memory Downloads

Binary memory requires data formatted in 8-hit bytes. Files stored or downloaded to binary memory are
converted to bit files prior to editing in the Bit File Editor. Afterward, these modified files from binary
memory are stored in bit memory as bit files.

Bit memory isthe preferred for user file downloads.

SCPI Commands
: MVEM DATA "<fil e_nane>", <databl ock>

Send this command to download the user file datainto the signal generator’s binary memory. The variable
<fi | e_nane> denotes the name that will be associated with the downloaded user file stored in the signa
generator.

Sample Command Line

: MVEM DATA "file_nane", #ABC

file_name the name of the user file stored in the signal generator’s memory
#A the number of decimal digitsto follow in B
B adecimal number specifying the number of data bytesin C

the binary user file data

Chapter 4 191

Downloading and Using Files
User Bit/Binary File Data Downloads

Example
: MVEM DATA "fil e_name", #1912S407897

file_name provides the user file name as it will appear in the signal generator’s binary memory
catalog

#1 defines the number of decimal digitsto follow in “B”

9 denotes how many bytes of data are to follow

125407897 the ASCII representation of the data that is downloaded to the signal generator. This

variableis represented by C in the sample command line

Querying the Waveform Data
Use the following SCPI command line to query user file data from binary memory:
: MVEM DATA? "fil e_nane"

The output format is the same as the input format.
Selecting Downloaded User Files as the Transmitted Data

Unframed Data

The following front panel key presses or remote commands will select the desired user file from the catalog
of user files as a continuous stream of unframed data for the active TDMA format or for a custom
modulation.

Viathe front panel:

1. ForaTDMA format, press Mode > Real Time TDMA > desired format > Data > User File.
For custom modulation, press Mode > Custom > Real Time I/Q Baseband > Data > User File.

2. Highlight the desired file in the catalog of user files.

3. Press Select File > desired format Off On or Custom Off On to On.

Viathe remote interface:

The following commands activate the desired TDMA format:

[SOURce] : RAD o: <desi red format >: DATA "BI T: <fi | e_name>"

[SOURce] : RAD o: <desired fornat>[: STATe] On

192 Chapter 4

Downloading and Using Files
User Bit/Binary File Data Downloads

The following commands activate the custom modul ation format:
[: SOURce] : RAD o: CUSTom DATA "BIT: <fil e_nanme>"
[: SOURce] : RAD o: CUSTon] : STATe] On

NOTE To select a user file from binary memory, send the same commands shown in the above
examples without Bl T: preceding the file name. For example:

[SOURce] : RAD o: <desi red for mat >: DATA "<fil e_nane>"

Framed Data

The following front panel key presses or remote commands will select the desired user file from the catalog
of user files as a continuous stream of framed data for the active TDMA format.

Viathe front panel:

1. Press Mode > Real Time TDMA > desired format > Data Format Pattern Framed >
Configure Timeslots > Configure (current active timeslot) > Data > User File.

2. Highlight the desired file in the catalog of user files.

3. PressSelect File

4. To activate the TDMA format, press Mode > Real Time TDMA > desired format > toggle the format on.
Viathe remote interface:

The following SCPI commands select and activate the user file as framed data for an NADC uplink traffic
channel intimeslot 1. The same command syntax is used for other data transmission formats.

[SOURce] : RAD 0: NADC: SLOT1: UTCHannel : DATA "BI T: <fi |l e_name>"
[SQURce] : RAD 0: NAD(: STATe] (n activatesthe NADC format.

Chapter 4 193

Downloading and Using Files
User Bit/Binary File Data Downloads

Modulating and Activating the Carrier

The following front panel key presses or remote commands will modulate the carrier and turn on the RF
output.

Viathe front panel:

1
2.
3.
4.

Set the carrier frequency to 2.5 GHz.
Set the carrier amplitude to —10.0 dBm.
Modul ate the carrier.

Activate the RF output.

Viathe remote interface:

[1 SQURce] : FREQuency: FI Xed 2. 5G4

[SOURce] : POMér[: LEVel][: 1 Mvedi at e] [: AVPLI t ude]

: QUTPut : MCDul ati on[: STATe] ON
: QUTPut [: STATe] ON

-10. 0DBM

194

Chapter 4

Downloading and Using Files
FIR Filter Coefficient Downloads

FIR Filter Coefficient Downloads

The signal generator accepts finite impul se response (FIR) filter coefficient downloads. After downloading
the coefficients, these user-defined FIR filter coefficient values can be selected as the filtering mechanism
for the active digital communications standard.

Data Requirements
There are two requirements for user-defined FIR filter coefficient files:

1. Datamust bein ASCII format.
The signal generator processes FIR filter coefficients as floating point numbers.

2. Datamust bein List format.
FIR filter coefficient datais processed as alist by the signal generator’s firmware. See “Sample
Command Line” on page 201.

Data Limitations

Filter lengths of up to 1024 taps (coefficients) are allowed. The oversample ratio (OSR) is the number of
filter taps per symbol. Oversample ratios from 1 through 32 are possible.

The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of 32.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps, 64 symbols and a 16-times oversample
ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symboals.

The sampling period (At) is equal to the inverse of the sampling rate (FS). The sampling rateis equal to the
symbol rate multiplied by the oversampleratio. For example, the GSM symbol rate is 270.83 ksps. With an
oversampleratio of 4, the sampling rate is 1083.32 kHz and At (inverse of FS) is 923.088 nsec.

Downloading FIR Filter Coefficient Data

The ESG storesthe FIR filesin the FIR (/USER/FIR) directory, which utilizes non-volatile memory. Use the
following SCPI command line to download FIR filter coefficients from the PC to the signal generator’'s FIR
memory:

: MEMbry: DATA FIR "<fil e_nane>", osr, coefficient{, coefficient}
Use the following SCPI command line to query list data from FIR memory:

: MEMbry: DATA FIR? "<fil e_name>"

Chapter 4 195

Downloading and Using Files
FIR Filter Coefficient Downloads

Sample Command Line

The following SCPI command will download atypical set of FIR filter coefficient values and name the file
“FIR1":

:MEMory: DATA FIR "FIRL", 4,0, 0O, O, 0, 0, 0. 000001, 0. 000012, 0. 000132, 0. 001101,

0. 006743, 0. 030588, 0. 103676, 0. 265790, 0. 523849, 0. 809508, 1, 1, 0. 809508, 0. 523849,
0. 265790, 0. 103676, 0. 030588, 0. 006743, 0. 001101, 0. 000132, 0. 000012, 0. 000001, 0O,
0,0,0,0

FI R1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient values.
Thefile is then represented with this name in the FIR File catal og.

specifies the oversample ratio.

60001, ... represent FIR filter coefficients.
Selecting a Downloaded User FIR Filter as the Active Filter

FIR Filter Data for TDMA Format

Thefollowing front panel key presses or remote commands will select user FIR filter data asthe active filter
for aTDMA modulation format.

Viathe front panel:

1. Press Mode > Real Time TDMA > desired format > Modify Standard > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. PressSelect File.

To activate the TDMA format press Mode > Real Time TDMA > desired format and toggle the format on.

196 Chapter 4

Downloading and Using Files
FIR Filter Coefficient Downloads

Viathe remote interface:
[SOURce] : RAD 0: <desired fornat>: FI LTer "<fil e_nane>"

This command selects the user FIR filter, specified by the file name, asthe active filter for the TDMA
modulation format. After selecting the file, activate the TDMA format with the following command:

[SOURce] : RAD 0: <desired fornat>[: STATe] On

FIR Filter Data for Custom Modulation

Thefollowing front panel key presses or remote commands will select user FIR filter data asthe active filter
for a custom modulation format.

Viathe front panel:

1. Press Mode > Custom > Real Time |1Q Baseband > Filter > Select > User FIR
2. Highlight the desired file in the catalog of FIR files.
3. PressSelect File.

To activate the custom modul ation, press Mode > Custom > Real Time 1Q Baseband >
Custom Off On and toggle to on.

Viathe remote interface:
[SOURce] : RAD o: CUSTom FI LTer "<file_name>"

This command selects the user FIR filter, specified by the file name, as the active filter for the custom
modulation format. After selecting the file, activate the TDMA format with the following command:

[: SOURce] : RAD o: CUSTon] : STATe] On

FIR Filter Data for COMA and W-CDMA Modulation

Thefollowing front panel key presses or remote commands will select user FIR filter data asthe active filter
for aCDMA modulation format. The processis very similar for W-CDMA.

Viathe front panel:

1. Press Mode > CDMA > Arb 1S-95A > CDMA Define > Filter > Select > User FIR
2. Highlight the desired file in the catalog of FIR files.

3. PressSelect File.

To activate the CDMA modulation, press Mode > CDMA > Arb 1S-95A > CDMA Off On to On.

Chapter 4 197

Downloading and Using Files
FIR Filter Coefficient Downloads

Viathe remote interface:
[SOURce] : RAD 0: <desired fornat>: ARB: Fl LTer "<fil e_name>"

This command selects the User FIR filter, specified by the file name, as the active filter for the CDMA or
W-CDMA modulation format. After selecting thefile, activate the CDMA or W-CDMA format with the
following command:

[SOURce] : RADI o: <desired fornat>: ARB[: STATe] On

Modulating and Activating the Carrier

The following front panel key presses or remote commands will set the carrier frequency, power, turn on the
modulation, and turn on the RF output.

Viathe front panel:

1. PressFrequency > 2.5 > GHz. Setsthe signal generator frequency to 2.5 Ghz.

2. Press Amplitude > -10 > dBm. Setsthe signal generator power to -10 dBm.

3. Press Mod On/0ff until the display annunciator reads MOD ON.

4. PressRF On/0ff until the display annunciator reads RF ON.

Viathe remote interface:

[: SOURce] : FREQuency: FI Xed 2. 5GHZ setsthe carrier frequency to 2.15 GHz.

[: SOURce] : POMér[: LEVel][: 1 Mvedi at e] [: AMPLI t ude] - 10. ODBMsets the carrier amplitude to
-10.0 dBm.

: QUTPut : MCDul ati on[: STATe] ONmodulates the carrier.
: QUTPuUt [: STATe] ONactivates the RF output.

198 Chapter 4

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)

Downloads Directly into Pattern RAM (PRAM)

Typically, the signal generator’s firmware generates the required data and framing structure and loads this
datainto Pattern RAM (PRAM). The datais read by the baseband generator, which in turnisinput to the 1/Q
modul ator. The signal generator can also accept data downloads directly into PRAM from a computer.
Programs such as MATLAB or MathCad can generate data which can be downloaded directly into PRAM in
either alist format or a block format.

Direct downloadsto PRAM allow you complete control over bursting which is especialy helpful for
designing experimental or proprietary framing schemes.

This section contains information that will help you transfer user-generated data from a system controller to
the signal generator’'s PRAM. It explains how to download data directly into PRAM and modulate the
carrier signal with the data.

The signal generator’s baseband generator assembly builds modulation schemes by reading data stored in
PRAM and constructing framing protocols according to the data patterns present. PRAM data can be
manipulated (types of protocols changed, standard protocols modified or customized, etc.) by the front panel
interface or by remote-command interface.

NOTE Because there is no parsing involved, block data format downloads are significantly faster
than list format downloads.

Data Limitations

Total (data bits plus control bits) download size limitations are 8 megabytes with Option 001/601, 32
megabytes with Option 002, and 64 megabytes with Option 602. Each sample for PRAM uses 4 bytes of
storage.

A data pattern file containing 8 megabits of modulation data must contain another 56 megabits of control
information. A file of this size requires 8 megasamples of memory; the largest amount of modulation data
for awaveform in the signal generator without Option 002 or 602.

Data Volatility

The signal generator provides two data storage areas: volatile waveform memory (WFM 1) and non-volatile
memory (NVWFM). Data stored in volatile waveform memory cannot be recovered if it is overwritten or if
the power is cycled. Data stored in non-volatile memory, however, remains until you delete the file. The
Option 005 signal generator’s hard disk provides one gigasample of non-volatile storage. Signal generators
without Option 005 provide 3 megasamples of non-volatile storage.

Chapter 4 199

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

Downloading in List Format

NOTE Because of parsing, list dataformat downloads are significantly slower than block format
downloads.

Data Requirements and Limitations Summary

1. Datamust be 8-hit, unsigned integers, from 0 to 255.
This requirement is necessary as list format downloads are parsed prior to being loaded into PRAM.
2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes datain 8-hit bytes. Each byte contains 1 bit of “datafield” information,
and 7 hits of control information associated with the data field bit. See Table 4-1 for the required data
and control bits.

Total (data bits plus control bits) download size limitations are 8 megabytes (32 MB for Option 002 and
64 MB for Option 602).
Preliminary Setup

It isimportant to set up the digital communications format before downloading data. This allows the signal
generator to define the modulation format, filter, and data clock. Activating the digital communications
format after the data has been downloaded to PRAM may corrupt the downloaded data.

Viathe front panel:
To set up the TDMA format, press Mode > desired format and toggle the format on.
To set up the custom modulation format, press Mode > Custom and toggle the format on.

To adjust symboal rate, filtering, or other parameters, press the appropriate softkey and adjust the value.

200 Chapter 4

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)

Viatheremote interface:
For TDMA formats, send the following SCPI commands:

[: SOURce] : RADI 0: <desired format >[: STATe] : ON
[: SOURce] : RAD o0: <desired fornat>: BURSt[: STATe] : ON
[SOURce] : BURSt : SQURce | NT

For custom modulation, send:[: SOURce] : RADI 0: CUSTOnj : STATe] : ON
To adjust symbol rate, filtering, or other parameters, send the appropriate SCPlI command.

SCPI Command to Download Data in List Format
: MEMDry: DATA: PRAM LI ST <ui nt 8>[, <ui nt 8>, <...>]

This command downloads the list-formatted data directly into PRAM. The variable <ui nt 8> isany of the
valid 8-bit, unsigned integer val ues between 0 and 255, as specified by Table 4-1. Note that each value
corresponds to a unique byte/addressin PRAM.

Sample Command Line

For example, to burst a FIX4 data pattern of “1100” five times, then turn the burst off for 32 data periods
(assuming a 1-bit/symbol modulation format), the command is:

: MEMory: DATA: PRAM LI ST 85, 21, 20, 20, 21, 21, 20, 20, 21, 21, 20, 20, 21, 21, 20, 20, 21,

21, 20, 20, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 144

21 signifies data=1, burst = on (1)

20 signifies data=0, burst = on (1)

16 signifies data=unspecified, burst = off (0)

85 enables event 1 trigger signifying the beginning of the data pattern
144 signifies data=unspecified, burst = off (0), pattern repeat = on (1)

Querying the Waveform Data
Use the following SCPI command line to determine whether there is a user-defined pattern in the PRAM:
: MEMor y: DATA: PRAM?

Chapter 4 201

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)

Downloading in Block Format

NOTE Because there is no parsing, block data format downloads are faster than list format
downloads.

Data Requirements and Limitations Summary

1. Datamust bein binary form.
This requirement is necessary as the baseband generator reads binary data from the data generator.
2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes data in 8-bit bytes. Each byte contains 1 bit of “data field” information,
and 7 bits of control information associated with the data field bit. See Table 4-1 for the required data
and control bits.

Total (data bits plus control bits) download size limitations are 8 megabytes (32 MB for Option 002 and
64 MB for Option 602).

Because a waveform containing 16 megabits of datafor subsequent modulation must also contain another
112 megabits of control information, afile this size requires asignal generator with Option 002 (32 MB) or
602 (64 MB). The largest amount of modulation datafor awaveform in an Option 001/601 signal generator
is approximately 8 megabits, which leaves enough room for the required 56 megabits of control bits.
Preliminary Setup

Before downloading data, set up the digital communications format to enable the signal generator to define
the modulation format, filter, and data clock. Activating the digital communications format after data
downloadsto PRAM can corrupt the data.

Viathe front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.

To set up a custom modulation format, press Mode > Custom and toggle the format on.

To adjust symboal rate, filtering, or other parameters, press the appropriate softkey and adjust the value.
Viathe remote interface:

For TDMA formats, send the following SCPI command:

[SOURce] : RADI 0: <desi red format >[: STATe] : ON

For custom modulation, send:[: SOURce] : RADI o: CUSTon{ : STATe] : ON

To adjust symbol rate, filtering, or other parameters, send the appropriate SCPlI command.

202 Chapter 4

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)

SCPI Command to Download Data in Block Format
: MEMor y: DATA: PRAM BLOCKk <dat abl ock>
This command downloads the block-formatted data directly into pattern RAM.

Sample Command Line

A sample command line:

: MEMDry: DATA: PRAM BLOCK #ABC

#A the number of decimal digitsto follow in B

B adecimal number specifying the number of data bytesin C

the binary user file data

Example 1

: MEMory: DATA: PRAM BLOCKk #19125407897

#1 defines the number of decimal digitsto follow in“B”.

9 denotes how many bytes of data are to follow.

125407897 isthe ASCII representation of the data downloaded to the signal generator. Thisvariable
is represented by C in the sample command line.

NOTE Not al binary values can be printed as ASCII characters. In fact, only ASCII characters

corresponding to decimal values 32 to 126 are printable keyboard characters. The above
example was chosen for simplicity. Typically, the binary value corresponding to your 8-bit
pattern is not printable.

Therefore, the program written to download and upload user files must correctly convert
between binary and the visible representation of the data sequence.

Chapter 4 203

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)

Modulating and Activating the Carrier

The following section explains how to modulate the carrier with the data downloaded to PRAM, first from
the front panel interface, and then via remote SCPI commands.

Via the Front Panel

1. Setthe carrier frequency to 2.5 Ghz (Frequency > 2.5 > GHz).

2. Set the carrier amplitude —10.0 dBm (Amplitude > -10 > dBm).

3.

4. Activate the RF output (press RF On/0ff until the display annunciator reads RF ON).

Turn modulation on (press Mod On/0ff until the display annunciator reads MOD ON).

Via the Remote Interface

Send the following SCPI commands to modulate and activate the carrier.

1

Set the carrier frequency to 2.5 Ghz:

[: SQURce] : FREQuency: FI Xed 2. 5GH#Z

Set the carrier power to —10.0 dBm:

[: SOURce] : PONér[: LEVel][: | Mvedi at e] [: AVPLI tude] -10. ODBM
Activate the modulation:

: QUTPut : MCDul ati on[: STATe] ON

Activate the RF output:

: QUTPuUt [: STATe] ON

Viewing the PRAM Waveform

After the waveform datais written to PRAM, the data pattern can be viewed using an oscilloscope. Thereis
approximately a 12-symbol delay between a state change in the burst bit and the corresponding effect at the
RF out. Thisdelay varieswith symbol rate and filter settings and requires compensation to advance the burst
bit in the downloaded PRAM file.

204

Chapter 4

Downloading and Using Files
Data Transfer Troubleshooting

Data Transfer Troubleshooting

This section is divided by the following data transfer method:
“Direct PRAM Download Problems’ on page 205
“User File Download Problems” on page 207
“User FIR Filter Coefficient File Download Problems’ on page 209
“ARB Waveform Data Download Problems” on page 210

Each section contains the foll owing troubl eshooting information:

» alist of symptoms and possible causes of typical problems encountered while downloading data to the
signal generator

» reminders regarding special considerations, file requirements, and data limitations

» tipson creating data, transferring data, data application and memory usage

Direct PRAM Download Problems

Table 4-5 Direct-to-PRAM Download Trouble - Symptoms and Causes
Symptom Possible Cause
Pattern reset bit not set.
The transmitted pattern is
interspersed with random, Insure that the pattern reset bit (bit 7, value 128) is set on thelast byte
unwanted data. of your downloaded data.

PRAM download exceeds the size of PRAM memory.

ERROR -223, Too much data Either use a smaller pattern or get more memory by ordering the
appropriate hardware option.

Chapter 4 205

Downloading and Using Files

Data Transfer Troubleshooting

Data Requirement Reminders

To avoid direct-download-to-PRAM problems, the following conditions must be met:

1. Thedatamust bein binary form.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

Bit | Function Value Comments

0 Data 0/1 Thisbit is the data to be modulated. This bit is“unspecified”
when burst (bit 2) isset to 0.

1 Reserved 0 Always 0.

2 Burst 0/1 Setto1l=RFon.

Set to 0 = RF off.

For non-bursted, non-TDMA systems, thisbit is set to 1 for al
memory locations, |eaving the RF output on continuously. For
framed data, this bit is set to 1 for on timeslots and O for off
timeslots

3 Reserved 0 Always 0.

4 Reserved 1 Always 1.

5 Reserved 0 Always 0.

6 Event 1 Output 0/1 Setting thisbit to 1 causesalevel transition at the EVENT 1 BNC
connector. This can be used for many functions. For example, as
amarker output to trigger external hardware when the data
pattern has restarted, or to create a data-synchronous pulse train
by toggling this bit in alternate addresses.

7 Pattern Reset 0/1 Set to 0 = continue to next sequential memory address.

Set to 1 = end of memory and restart memory playback.
Thishit isset to 0 for all bytes except the last address of PRAM.
For the last address (byte) of PRAM, it is set to 1 to restart the
pattern.

206 Chapter 4

Downloading and Using Files
Data Transfer Troubleshooting

User File Download Problems

Table 4-6 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

Not enough datato fill asingletimeslot.

If auser file does not completely fill asingletimedot, the firmware
No data modul ated will not load any datainto the timeslot. For example, if atimeslot’s

datafield should contain 114 bits, and only 100 bits are provided in

the user file, no datawill be loaded into the datafield of the timeslot.
Therefore, no data will be detected at the RF output.

Data does not completely fill an integer number of timeslots.

If auser filefillsthe data fields of more than onetimeslot in a

At RF output, continuously repeating framed transmission, the user file will be
some data modul ated, restarted after the last timeslot containing completely filled data
some data missing fields. For example, if the user file contains enough data to fill the

datafields of 3.5 timeslots, firmware will load 3 timeslots with data
and restart the user file after the third timeslot. The last 0.5 timesl ot
worth of datawill never be modul ated.

Data Requirement Reminders

To avoid user file data download problems, the following conditions must be met:

1. Theuser file selected must entirely fill the data field of each timeslot.

2. For binary memory downloads, the user file must be a multiple of 8 bits, so that it can be represented in
ASCII characters.

3. Available PRAM must be large enough to support both the data field bits and the framing bits.
Requirement for Continuous User File Data Transmission

“Full Data Field” Requirements

If auser file does not completely fill asingletimeslot, the firmware does not |oad any datainto that timeslot.
For example, if atimeslot’s datafield should contain 114 bits, and only 100 bits are provided in the user file,
no datais loaded into the timeslot data field, and no datais transmitted at the RF output.

To solve this problem, add bits to the user file until it completely fills the data field of the active protocol.

Chapter 4 207

Downloading and Using Files
Data Transfer Troubleshooting

“Integer Number of Timeslots” Requirement for Multiple-Timeslots

If auser filefills the data fields of more than one timeslot in a continuously repeating framed transmission,
the user file is restarted after the last timeslot containing completely filled data fields. For example, if the
user file contains enough datato fill the datafields of 3.5 timeslots, firmware loads 3 timesl ots with data and
restart the user file after the third timeslot. The last 0.5 timeslot worth of datais never modul ated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer number of
timeslots
“Multiple-of-8-Bits” Requirement

For downloads to binary memory, user file data must be downloaded in multiples of 8 hits, since SCPI
specifies datain 8-hit bytes. Therefore, if the original data pattern’s length is not a multiple of 8, you may
need to:

* Add additional bits to complete the ASCII character
» replicate the data pattern to generate a continuously repeating pattern with no discontinuity

» truncate the remaining bits

NOTE The “multiple-of-8-bits’ data length requirement (for binary memory downloads) isin
addition to the requirement of completely filling the data field of an integer number of
timeslots.

Using Externally Generated, Real-Time Data for Large Files

The data fields absolutely must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the front-panel
DATA, DATA CLOCK, and SYMBOL SY NC connectors. This data can be continuoudly transmitted, or can
be framed by supplying a data-synchronous burst pulse to the EXT1 INPUT connector on the front panel.
Additionally, the external data can be multiplexed into internally generated framing

The the data fields absol utely must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the front-panel
DATA, DATA CLOCK, and SYMBOL SY NC connectors. This data can be continuoudly transmitted, or can
be framed by supplying a data-synchronous burst pulse to the EXT1 INPUT connector on the front panel.
Additionally, the external data can be multiplexed into the internally generated framing

208 Chapter 4

Downloading and Using Files
Data Transfer Troubleshooting

User FIR Filter Coefficient File Download Problems

Table 4-7 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

There is not enough memory available for the FIR coefficient file
being downloaded.

ERROR -321, Out of memory
To solve the problem, either reduce the file size of the FIR file or
delete unnecessary files from memory.

User FIR filter has too many symbols.

ERROR -223, Too much data | Real Time cannot use afilter that has more than 64 symbols (512
symbols maximum for ARB). You may have specified an incorrect
oversampleratio in the filter table editor.

Data Requirement Reminders

To avoid user FIR filter coefficient data download problems, the following conditions must be met:
1. Datamust bein ASCII format.

2. Downloads must bein list format.

3. Filters containing more symbols than the hardware allows (64 for Real Time and 512 for ARB) will not
be selectable for that configuration.

Chapter 4 209

Downloading and Using Files
Data Transfer Troubleshooting

ARB Waveform Data Download Problems

Table 4-8

I/Q Waveform Data Download Trouble - Symptoms and Causes

Symptom

Possible Cause

ERROR 224, Text file busy.

Attempting to download a waveform that has the same name as the
waveform currently being played by the signa generator.

To solve the problem, either change the name of the waveform being
downloaded or turn off the ARB.

ERROR -321, Out of memory.

Thereis not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or
delete unnecessary files from ARB memory.

No RF Output

If no user marker file is provided then a default marker file containing all
zerosis created. If the signal generator’'s Mrk 2 to RF Blank softkey is set to
on, the RF will be blanked. Go to MODE > Dual ARB > ARB Setup and
toggle Mrk 2 to RF to off.

Data Requirement Reminders

To avoid I/Q waveform data download problems, the following six conditions must be met:

1

2
3.
4

Data must be in signed, 2's complement (binary) format.
Data must ordered M SB first to LSB last. Each 1/Q sample has 4 bytes of data.
Input integers must be between —32768 and 32767.

Each | and Q waveform file must have at least 60 samples.

210

Chapter 4

Index

A C
abort function, 9 C/IC++, 4
address include files, 31
GPIB address, 7 clear command, 11
IP address, 14 clear function, 11
Adgilent CLS command, 121
BASIC, 33 command prompt, 16, 102
SICL, 32 commands, 9, 10, 11, 12
VISA, 32 computer interface, 3
Agilent BASIC, 4 condition registers
Agilent VISA, 7, 14, 25 description, 126
ARB memory vs. NVARB memory, 157 controller, 8
ARB waveform file downloads, 159, 174, 180, 182
example programs, 162, 176 D
playing a downloaded waveform, 173 data block information, 159
SCPI commands, 160, 175 datalimitations
ARB waveform files ARB waveform downloads, 159
composition, 180 FIR filter downloads, 195
encryption, 180 PRAM downloads, 199
extracting, 181 user file downloads, 185
headers, 180 data questionable filters
usein other ESGs, 181 BERT transition, 153
arbitrary block data, 159 calibration transition, 149
ascii, 12 frequency transition, 143
modulation transition, 146
B power transition, 140
BASIC transition, 137
ABORT, 9 data questionable groups
CLEAR, 11 BERT status, 151
ENTER, 12 calibration status, 148
LOCAL, 11 frequency status, 142
LOCAL LOCKOUT, 10 modulation status, 145
OUTPUT, 12 power status, 139
REMOTE, 9 status, 135
binary memory and bit memory, 184 data questionable registers
binary memory catalog user file downloads, 191 BERT condition, 152
binary memory vs. bit memory, 184 BERT event, 153
bit memory and binary memory, 184 BERT event enable, 153
bit memory catalog user file downloads, 190 calibration condition, 149
bit status, how and what to monitor, 118 calibration event, 149
bit values, 117 calibration event enable, 150
bit-value and output power, ARB waveforms, 157 condition, 136
block data, arbitrary, 159 event, 137

event enable, 138

Index 211

Index

frequency condition, 143
frequency event, 144
frequency event enable, 144
modulation condition, 146
modulation event, 147
modul ation event enable, 147
power condition, 140
power event, 140
power event enable, 141
data requirements
ARB waveform downloads, 158
FIR filter downloads, 195
user file downloads, 184
datatransfer, 3
datavolatility
FIR filter downloads, 195
PRAM downloads, 199
user file downloads, 185
developing programs, 30, 31
DHCP, 15
DNS, 16
DOS prompt, 20
download libraries, 7, 14
downloading
ARB waveform data, 156, 180
encrypted ARB waveform files, 182
FIR filter coefficient data, 195
user files, 183
downloading files, 155

E

echo, lack of, 23
EnableRemote, 10
encryption, 180
enter function, 12
errors, 17
ESE commands, 121
event enable register
description, 126
event registers
description, 126
extracting waveforms, 180, 181

F

file encryption, 180
file headers, 180
file transfer, 23
files, 31
filters
See also transition filters
negative transition, description, 126
positive transition, description, 126
firmware status, monitoring, 118
FTP, 23

G

Getting Started Wizard, 8
GPIB, 3
address, 7
cables, 7
card installation, 5
configuration, 7
controller, 8
interface, 5
10 libraries, 7
listener, 8
on UNIX, 6
overview, 5
program examples, 32
SCPI commands, 8
talker, 8
verifying operation, 8

H

hardware status, monitoring, 118
headers, 180

hostname, 14

HyperTerminal, 27

I

iabort, 9

ibloc, 11

ibstop, 9

ibwrt, 12

iclear, 12

|EEE standard, 5
igpibllo, 10

212

Index

instrument status, monitoring, 114
interface, 3

interface cards, 5

IO libraries, 2, 3, 5, 7, 8, 25

IP address, 14

iremote, 10

J

Java
example, 102

L
LabView, 4
LAN, 3
DHCP configuration, 15
hostname, 14
interface, 3
1O libraries, 14
manual configuration, 14
overview, 14
program examples, 67
sockets, 67
sockets LAN, 14
TELNET, 20
verifying operation, 16
VXI-11, 14, 67
languages, 30
libraries, 2, 3, 7, 8, 14, 25
listener, 8
local echo, lack of, 23
local function, 11
local lockout function, 10

M

manual operation, 9
MS-DOS Command Prompt, 16

N

National Instruments

NI-488.2, 32

NI-488.2 include files, 31

VISA, 32
National Instruments VISA, 7, 14, 25
negative transition filter, description, 126

NI-488.2, 7, 14, 25
EnableRemote, 10
ibler, 11
ibloc, 11
ibrd, 13
ibstop, 9
ibwrt, 12
SetRWLS, 10
NVARB memory vs. ARB memory, 157

0

OPC commands, 121
output command, 12
output function, 12

P

pattern RAM, 199
PCI-GPIB, 32
PERL
example, 101
personal computer, PC, 5
ping program, 16
polling method (status registers), 119
ports, 72
positive transition filter, description, 126
PRAM, 199
PRAM downloads
in block format, 202
preliminary setup, 202
sample commands line, 203
SCPI commands, 203
in list format, 200, 201
data query SCPI command, 201
preliminary setup, 200
SCPI commands, 201

modulating and activating the carrier, 204

problems

ARB waveform downloads, 210

PRAM downloads, 205

user file downloads, 207

user FIR filter downloads, 209
programming examples

using GPIB, 32

using LAN, 67

Index

Index

213

Index

using RS-232, 105

waveform downloading using C++, 164

waveform downloading using HP BASIC for
UNIX, 170

waveform downloading using HP BASIC for
Windows, 167

waveform generation using C++, 162

programming languages, 30

R

register system overview, 114

registers
See also status registers
condition, description, 126
data questionable BERT condition, 152
data questionable BERT event, 153
data questionable BERT event enable, 153
data questionable calibration condition, 149
data questionable calibration event, 149
data questionable calibration event enable, 150
data questionable condition, 136
data questionable event, 137
data questionable event enable, 138
data questionable frequency condition, 143
data questionable frequency event, 144
data questionable frequency event enable, 144
data questionable modulation condition, 146
data questionable modulation event, 147
data questionable modulation event enable, 147
data questionable power condition, 140
data questionable power event, 140
data questionable power event enable, 141
in status groups (descriptions), 126
overall system, 115, 116
standard event status, 128
standard event status enable, 128
standard operation condition, 130, 133
standard operation event, 131, 133
standard operation event enable, 131, 134
status byte, 124

remote
annunciator, 105

remote function, 9

remote interface, 2
GPIB, 6

RS-232, 25

RS-232, 3
address, 105
baud rate, 26
cable, 26
configuration, 26
echo, 26
format parameters, 28
interface, 26
10 libraries, 25
overview, 25
program examples, 105
settings, baud rate, 105
verifying operation, 27

S

sample command line, 201
SCPI, 4,5
SCPI commands, 8
ARB waveform file downloads, 160, 175
example programs
C++, 164
HP BASIC for UNIX, 170, 178
HP BASIC for Windows, 162, 176
HP BASIC for windows, 167
playing a downloaded waveform, 173
for status registers
| EEE 488.2 common commands, 121
PRAM downloads
in block format, 203
preliminary setup, 202
sample command line, 203
inlist format, 201
preliminary setup, 200
querying the PRAM data, 201
sample command line, 201
modulating and activating the carrier, 204
user file downloads, 190, 191
guerying the PRAM data, 191, 192
sample command line, 191
user FIR file downloads
sample command line, 196
SCPI register model, 114
service request method (status registers), 119
service reguest method, using, 119

214

Index

SetRWLS, 10
SICL, 7, 14, 25, 32

iabort, 9

iclear, 12

igpibllo, 10

iprintf, 12

iremote, 10

iscanf, 13
signal generator

monitoring status, 114
sockets

example, 72, 75

Java, 102

LAN, 67, 72

PERL, 101

UNIX, 72

Windows, 73
sockets LAN, 19
SRE commands, 121
SRQ command, 119
SRQ method (status registers), 119
standard event status enable register, 128
standard event status group, 127
standard event status register, 128
standard operation condition register, 130, 133
standard operation event enable register, 131, 134
standard operation event register, 131, 133
standard operation status group, 129, 132
standard operation transition filters, 131, 133
status byte

overall register system, 115, 116
status byte group, 123
status byte register, 124
status groups

data questionable, 135

data questionable BERT, 151

data questionable calibration, 148

data questionable frequency, 142

data questionable modulation, 145

data questionable power, 139

registers, 126

standard event, 127

standard operation, 129, 132

status byte, 123
status registers

See also registers
accessing information, 118
bit values, 117
hierarchy, 114
how and what to monitor, 118
in status groups, 126
overall system, 115, 116
programming, 113
SCPI commands, 121
SCPI model, 114
setting and querying, 121
standard event, 128
standard event status enable, 128
system overview, 114
using, 117
STB command, 121
system requirements, 30

T

talker, 8
TCP/IP, 19
TELNET
example, 23
UNIX, 22
using, 20
transition filters
See also filters
data questionable, 137
data questionable BERT, 153
data questionable calibration, 149
data questionable frequency, 143
data questionable modulation, 146
data questionable power, 140
description, 126
standard operation, 131, 133
troubleshooting
ARB waveform downloads, 210
ping response errors, 17
PRAM downloads, 205
RS-232, 28
user file downloads, 207
user FIR filter downloads, 209

Index

Index

215

Index

U
UNIX, 5
UNIX TELNET command, 23
user file downloads, 189
modulating and activating the carrier, 194
selecting the user file as the data source, 192
user files
as data sources for frames transmissions, 185
in framed mode, 183
in pattern mode, 183
multiple user files as data sources, 188
user FIR file downloads, 196
selecting a downloaded user FIR file, 196
using files, 155

v
ViPrintf, 12
VISA, 7,14, 25
include files, 31
library, 32
scanf, 13
viClear, 11
ViPrintf, 12
viTerminate, 9
VISA Assistant, 8
Visual Basic, 4
viTerminate, 9
VXI-11, 18, 67
programming, 67
with SICL, 67
with VISA, 70

W
waveform downloading
using C++, 164
using HP BASIC for UNIX, 170, 178
using HP BASIC for Windows, 167, 176
waveform files
composition, 180
encryption, 180
extracting, 181
headers, 180
usein other ESGs, 181

216

Index

	Title Page
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	I/O Libraries
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting I/O Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function

	Using LAN
	1. Selecting I/O Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using TELNET LAN
	Using FTP

	Using RS-232
	1. Selecting I/O Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	Interface Check Using NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Examples
	Before Using the Examples
	VXI-11 Programing
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status Register System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	4 Downloading and Using Files
	ARB Waveform Data Downloads
	Bit-value and Output Power
	Types of Arbitrary Waveform Generator Memory
	Data Requirements
	File Structure
	Downloading Waveforms
	Playing a Downloaded Waveform
	Downloading E443xB Signal Generator Files

	Understanding ARB Waveform File Composition and Encryption
	Downloading waveform data to the ESG for extraction as an encrypted waveform file
	Extracting waveform files from the ESG for use in other ESGs
	Downloading encrypted waveform files to the ESG

	User Bit/Binary File Data Downloads
	Framed and Unframed Data Types
	Data Requirements
	Data Limitations
	Data Volatility
	User Files as Data Source for Framed Transmission
	Multiple User Files Selected as Data Sources for Different Timeslots
	Downloading User File Data
	Selecting Downloaded User Files as�the�Transmitted�Data
	Modulating and Activating the Carrier

	FIR Filter Coefficient Downloads
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active�Filter

	Downloads Directly into Pattern RAM (PRAM)
	Data Limitations
	Data Volatility
	Downloading in List Format
	Downloading in Block Format
	Modulating and Activating the Carrier
	Viewing the PRAM Waveform

	Data Transfer Troubleshooting
	Direct PRAM Download Problems
	User File Download Problems
	User FIR Filter Coefficient File Download Problems
	ARB Waveform Data Download Problems

	Index

